We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider plane Cremona maps with proper base points and the base ideal generated by the linear system of forms defining the map. The object of this work is to study the link between the algebraic properties of the base ideal and those of the ideal of these points fattened by the virtual multiplicities arising from the linear system. We reveal conditions which naturally regulate this association, with particular emphasis on the homological side. While most classical numerical inequalities concern the three highest virtual multiplicities, here we emphasize also the role of one single highest multiplicity. In this vein we describe classes of Cremona maps for large and small values of the highest virtual multiplicity. We also deal with the delicate question as to when is the base ideal non-saturated and consider the structure of its saturation.
We address two aspects of finitely generated modules of finite projective dimension over local rings and their connection in between: embeddability and grade of order ideals of minimal generators of syzygies. We provide a solution of the embeddability problem and prove important reductions and special cases of the order ideal conjecture. In particular, we derive that, in any local ring R of mixed characteristic p > 0, where p is a nonzero divisor, if I is an ideal of finite projective dimension over R and p 𝜖 I or p is a nonzero divisor on R/I, then every minimal generator of I is a nonzero divisor. Hence, if P is a prime ideal of finite projective dimension in a local ring R, then every minimal generator of P is a nonzero divisor in R.
In this paper we consider the problem of explicitly finding canonical ideals of one-dimensional Cohen–Macaulay local rings. We show that Gorenstein ideals contained in a high power of the maximal ideal are canonical ideals. In the codimension 2 case, from a Hilbert–Burch resolution, we show how to construct canonical ideals of curve singularities. Finally, we translate the problem of the analytic classification of curve singularities to the classification of local Artin Gorenstein rings with suitable length.
Regularity, complete intersection and Gorenstein properties of a local ring can be characterized by homological conditions on the canonical homomorphism into its residue field. In positive characteristic, the Frobenius endomorphism (and, more generally, any contracting endomorphism) can also be used for these characterizations. We introduce here a class of local homomorphisms, in some sense larger than all above, for which these characterizations still hold, providing an unified treatment for this class of homomorphisms.
We give explicit formulas for the Hilbert series of residual intersections of a scheme in terms of the Hilbert series of its conormal modules. In a previous paper, we proved that such formulas should exist. We give applications to the number of equations defining projective varieties and to the dimension of secant varieties of surfaces and three-folds.
In this article, we prove a strong version of the local Bertini theorem for normality on local rings in mixed characteristic. The main result asserts that a generic hyperplane section of a normal, Cohen–Macaulay, and complete local domain of dimension at least 3 is normal. Applications include the study of characteristic ideals attached to torsion modules over normal domains, which is fundamental in the study of Euler system theory, Iwasawa's main conjectures, and the deformation theory of Galois representations.
We obtain a characterisation of the monomial ideals $I\subseteq \mathbb{C}[x_{1},\dots ,x_{n}]$ of finite colength that satisfy the condition $e(I)={\mathcal{L}}_{0}^{(1)}(I)\cdots {\mathcal{L}}_{0}^{(n)}(I)$, where ${\mathcal{L}}_{0}^{(1)}(I),\dots ,{\mathcal{L}}_{0}^{(n)}(I)$ is the sequence of mixed Łojasiewicz exponents of $I$ and $e(I)$ is the Samuel multiplicity of $I$. These are the monomial ideals whose integral closure admits a reduction generated by homogeneous polynomials.
Let R be a complete intersection ring, and let M and N be R-modules. It is shown that the vanishing of ExtiR(M, N) for a certain number of consecutive values of i starting at n forces the complete intersection dimension of M to be at most n–1. We also estimate the complete intersection dimension of M*, the dual of M, in terms of vanishing of cohomology modules, ExtiR(M,N).
This paper takes a new look at ideals generated by 2×2 minors of 2×3 matrices whose entries are powers of three elements not necessarily forming a regular sequence. A special case of this is the ideals determining monomial curves in three-dimensional space, which were studied by Herzog. In the broader context studied here, these ideals are identified as Northcott ideals in the sense of Vasconcelos, and so their liaison properties are displayed. It is shown that they are set-theoretically complete intersections, revisiting the work of Bresinsky and of Valla. Even when the three elements are taken to be variables in a polynomial ring in three variables over a field, this point of view gives a larger class of ideals than just the defining ideals of monomial curves. We then characterize when the ideals in this larger class are prime, we show that they are usually radical and, using the theory of multiplicities, we give upper bounds on the number of their minimal prime ideals, one of these primes being a uniquely determined prime ideal of definition of a monomial curve. Finally, we provide examples of characteristic-dependent minimal prime and primary structures for these ideals.
The face ring of a homology manifold (without boundary) modulo a generic system of parameters is studied. Its socle is computed and it is verified that a particular quotient of this ring is Gorenstein. This fact is used to prove that the algebraic g-conjecture for spheres implies all enumerative consequences of its far-reaching generalization (due to Kalai) to manifolds. A special case of Kalai’s conjecture is established for homology manifolds that have a codimension-two face whose link contains many vertices.
Let R be a Noetherian local ring with maximal ideal m and lull ring of fractions Q. In this paper we consider a numerical function EHI: ℤ → ℤ, where I is an m-primary ideal of R, that coincides with the Hilbert function HI for positive values and that takes account of the fractional powers of I for negative values. We focus our attention on the one-dimensional case. Among other results we characterize one-dimensional Gorenstein local rings by means of the symmetry of EHR in Theorem 2.1, we show that the extended Hilbert function is not determined by the Hilbert function in Example 2.2. and we generalize to m-primary ideals the upper bound for e1(m) given by Matlis for the maximal ideal.
It is well-known that if R is a commutative ring with identity, M is a Noetherian R-module and I is an ideal of R such that M/IM has finite length, then the function n → lR (M /InM) is a polynomial function for n large (cf. [3], p. II-25), where lR denotes length as an R-module. In this note we are concerned with the function
where a1, … , ar is a multiplicity system for has finite length.
The purpose of this paper is to provide additional evidence to support our view that the modules of generalized fractions introduced in [8] are worth further investigation: we show that, for a module M over a (commutative, Noetherian) local ring A (with identity) having maximal ideal m and dimension n, the n-th local cohomology module may be viewed as a module of generalized fractions of M with respect to a certain triangular subset of An + 1, and we use this work to formulate Hochster's ‘Monomial Conjecture’ [2, Conjecture 1]; in terms of modules of generalized fractions and to make a quick deduction of one of Hochster's results which supports that conjecture.
Let R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.
Let N be a direct summand of a module which is a direct sum of modules of torsion-free rank one over a discrete valuation ring. Then there is a torsion module T such that N⊕T is also a direct sum of modules of torsion-free rank one.