We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The purpose of this paper is, as part of the stratification of Cohen–Macaulay rings, to investigate the question of when the fiber products are almost Gorenstein rings. We show that the fiber product $R \times _T S$ of Cohen–Macaulay local rings R, S of the same dimension $d>0$ over a regular local ring T with $\dim T=d-1$ is an almost Gorenstein ring if and only if so are R and S. In addition, the other generalizations of Gorenstein properties are also explored.
The symbolic analytic spread of an ideal $I$ is defined in terms of the rate of growth of the minimal number of generators of its symbolic powers. In this article, we find upper bounds for the symbolic analytic spread under certain conditions in terms of other invariants of $I$. Our methods also work for more general systems of ideals. As applications, we provide bounds for the (local) Kodaira dimension of divisors, the arithmetic rank, and the Frobenius complexity. We also show sufficient conditions for an ideal to be a set-theoretic complete intersection.
Let $K$ be a compact Lie group with complexification $G$, and let $V$ be a unitary $K$-module. We consider the real symplectic quotient $M_{0}$ at level zero of the homogeneous quadratic moment map as well as the complex symplectic quotient, defined here as the complexification of $M_{0}$. We show that if $(V,G)$ is $3$-large, a condition that holds generically, then the complex symplectic quotient has symplectic singularities and is graded Gorenstein. This implies in particular that the real symplectic quotient is graded Gorenstein. In case $K$ is a torus or $\operatorname{SU}_{2}$, we show that these results hold without the hypothesis that $(V,G)$ is $3$-large.
We prove that each positive power of the maximal ideal of a commutative Noetherian local ring is Tor-rigid and strongly rigid. This gives new characterizations of regularity and, in particular, shows that such ideals satisfy the torsion condition of a long-standing conjecture of Huneke and Wiegand.
In this short note, we confirm a conjecture of Vasconcelos which states that the Rees algebra of any Artinian almost complete intersection monomial ideal is almost Cohen–Macaulay.
We describe generators of disguised residual intersections in any commutative Noetherian ring. It is shown that, over Cohen–Macaulay rings, the disguised residual intersections and algebraic residual intersections are the same, for ideals with sliding depth. This coincidence provides structural results for algebraic residual intersections in a quite general setting. It is shown how the DG-algebra structure of Koszul homologies affects the determination of generators of residual intersections. It is shown that the Buchsbaum–Eisenbud family of complexes can be derived from the Koszul–Čech spectral sequence. This interpretation of Buchsbaum–Eisenbud families has a crucial rule to establish the above results.
Let (R, ) be an analytically unramified local ring of positive prime characteristic p. For an ideal I, let I* denote its tight closure. We introduce the tight Hilbert function $$H_I^*\left( n \right) = \Im \left( {R/\left( {{I^n}} \right)*} \right)$$ and the corresponding tight Hilbert polynomial $$P_I^*\left( n \right)$$, where I is an m-primary ideal. It is proved that F-rationality can be detected by the vanishing of the first coefficient of $$P_I^*\left( n \right)$$. We find the tight Hilbert polynomial of certain parameter ideals in hypersurface rings and Stanley-Reisner rings of simplicial complexes.
We prove results concerning the multiplicity as well as the Cohen–Macaulay and Gorenstein properties of the special fiber ring $\mathscr{F}(E)$ of a finitely generated $R$-module $E\subsetneq R^{e}$ over a Noetherian local ring $R$ with infinite residue field. Assuming that $R$ is Cohen–Macaulay of dimension 1 and that $E$ has finite colength in $R^{e}$, our main result establishes an asymptotic length formula for the multiplicity of $\mathscr{F}(E)$, which, in addition to being of independent interest, allows us to derive a Cohen–Macaulayness criterion and to detect a curious relation to the Buchsbaum–Rim multiplicity of $E$ in this setting. Further, we provide a Gorensteinness characterization for $\mathscr{F}(E)$ in the more general situation where $R$ is Cohen–Macaulay of arbitrary dimension and $E$ is not necessarily of finite colength, and we notice a constraint in terms of the second analytic deviation of the module $E$ if its reduction number is at least three.
We establish the continuity of Hilbert–Kunz multiplicity and F-signature as functions from a Cohen–Macaulay local ring $(R,\mathfrak{m},k)$ of prime characteristic to the real numbers at reduced parameter elements with respect to the $\mathfrak{m}$-adic topology.
Let R be a d-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set S := R/(f), where f := f1,. . .,fc is an R-regular sequence. Suppose M and N are maximal CM S-modules. It is shown that if ExtSi(M, N) = 0 for some (d + c + 1) consecutive values of i ⩾ 2, then ExtSi(M, N) = 0 for all i ⩾ 1. Moreover, if this holds true, then either projdimR(M) or injdimR(N) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.
We compute Betti numbers for a Cohen–Macaulay tangent cone of a monomial curve in the affine $4$-space corresponding to a pseudo-symmetric numerical semigroup. As a byproduct, we also show that for these semigroups, being of homogeneous type and homogeneous are equivalent properties.
For a pair $(R,I)$, where $R$ is a standard graded domain of dimension $d$ over an algebraically closed field of characteristic 0, and $I$ is a graded ideal of finite colength, we prove that the existence of $\lim _{p\rightarrow \infty }e_{HK}(R_{p},I_{p})$ is equivalent, for any fixed $m\geqslant d-1$, to the existence of $\lim _{p\rightarrow \infty }\ell (R_{p}/I_{p}^{[p^{m}]})/p^{md}$. This we get as a consequence of Theorem 1.1: as $p\longrightarrow \infty$, the convergence of the Hilbert–Kunz (HK) density function $f(R_{p},I_{p})$ is equivalent to the convergence of the truncated HK density functions $f_{m}(R_{p},I_{p})$ (in $L^{\infty }$ norm) of the mod$p$reductions$(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. In particular, to define the HK density function $f_{R,I}^{\infty }$ in char 0, it is enough to prove the existence of $\lim _{p\rightarrow \infty }f_{m}(R_{p},I_{p})$, for any fixed $m\geqslant d-1$. This allows us to prove the existence of $e_{HK}^{\infty }(R,I)$ in many new cases, for example, when Proj R is a Segre product of curves.
This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$, introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$. Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$-module $M$, each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$.
We give a new characterization, in the equicharacteristic case, of Teter rings by using Macaulay inverse systems. We extend the previous characterizations due to Teter, to Huneke and Vraciu and to Ananthnarayan et al., to any characteristic of the ground field and remove the hypothesis on the socle ideal. We construct and describe the variety parametrizing Teter covers and we show how to check if an Artin ring is Teter. If this is the case, we show how to compute a Teter cover.
Let be a Noetherian local ring and let M be a finitely generated R-module of dimension d. Let be a system of parameters of M and let be a d-tuple of positive integers. In this paper we study the length of generalized fractions M(1/(x1, … , xd, 1)), which was introduced by Sharp and Hamieh. First, we study the growth of the function
Then we give an explicit calculation for the function in the case in which M admits a certain Macaulay extension. Most previous results on this topic are improved in a clearly understandable way.
We study the relationship between the reduction number of a primary ideal of a local ring relative to one of its minimal reductions and the multiplicity of the corresponding Sally module. This paper is focused on three goals: (i) to develop a change of rings technique for the Sally module of an ideal to allow extension of results from Cohen–Macaulay rings to more general rings; (ii) to use the fiber of the Sally modules of almost complete intersection ideals to connect its structure to the Cohen–Macaulayness of the special fiber ring; (iii) to extend some of the results of (i) to two-dimensional Buchsbaum rings. Along the way, we provide an explicit realization of the $S_{2}$-fication of arbitrary Buchsbaum rings.
The first two Hilbert coefficients of a primary ideal play an important role in commutative algebra and in algebraic geometry. In this paper we give a complete algebraic structure of the Sally module of integrally closed ideals $I$ in a Cohen–Macaulay local ring $A$ satisfying the equality $\text{e}_{1}(I)=\text{e}_{0}(I)-\ell _{A}(A/I)+\ell _{A}(I^{2}/QI)+1,$ where $Q$ is a minimal reduction of $I$, and $\text{e}_{0}(I)$ and $\text{e}_{1}(I)$ denote the first two Hilbert coefficients of $I,$ respectively, the multiplicity and the Chern number of $I.$ This almost extremal value of $\text{e}_{1}(I)$ with respect to classical inequalities holds a complete description of the homological and the numerical invariants of the associated graded ring. Examples are given.
Our object of study is a rational map defined by homogeneous forms $g_{1},\ldots ,g_{n}$, of the same degree $d$, in the homogeneous coordinate ring $R=k[x_{1},\ldots ,x_{s}]$ of $\mathbb{P}_{k}^{s-1}$. Our goal is to relate properties of $\unicode[STIX]{x1D6F9}$, of the homogeneous coordinate ring $A=k[g_{1},\ldots ,g_{n}]$ of the variety parameterized by $\unicode[STIX]{x1D6F9}$, and of the Rees algebra ${\mathcal{R}}(I)$, the bihomogeneous coordinate ring of the graph of $\unicode[STIX]{x1D6F9}$. For a regular map $\unicode[STIX]{x1D6F9}$, for instance, we prove that ${\mathcal{R}}(I)$ satisfies Serre’s condition $R_{i}$, for some $i>0$, if and only if $A$ satisfies $R_{i-1}$ and $\unicode[STIX]{x1D6F9}$ is birational onto its image. Thus, in particular, $\unicode[STIX]{x1D6F9}$ is birational onto its image if and only if ${\mathcal{R}}(I)$ satisfies $R_{1}$. Either condition has implications for the shape of the core, namely, $\text{core}(I)$ is the multiplier ideal of $I^{s}$ and $\text{core}(I)=(x_{1},\ldots ,x_{s})^{sd-s+1}.$ Conversely, for $s=2$, either equality for the core implies birationality. In addition, by means of the generalized rows of the syzygy matrix of $g_{1},\ldots ,g_{n}$, we give an explicit method to reduce the nonbirational case to the birational one when $s=2$.
We study some questions on numerical semigroups of type 2. On the one hand, we investigate the relation between the genus and the Frobenius number. On the other hand, for two fixed positive integers g1, g2, we give necessary and sufficient conditions in order to have a numerical semigroup S such that {g1, g2} is the set of its pseudo-Frobenius numbers and, moreover, we explicitly build families of such numerical semigroups.
Let $R$ be a commutative Gorenstein ring. A result of Araya reduces the Auslander–Reiten conjecture on the vanishing of self-extensions to the case where $R$ has Krull dimension at most one. In this paper we extend Araya’s result to certain $R$-algebras. As a consequence of our argument, we obtain examples of bound quiver algebras that satisfy the Auslander–Reiten conjecture.