We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents the form of some characteristics of the Voronoi tessellation which is generated by a stationary Poisson process in . Expressions are given for the spherical and linear contact distribution functions. These formulae lead to numerically tractable double-integral formulae for chord length probability density functions.
Let K ⊂ Rd be a convex body and choose points xl, x2, …, xn randomly, independently, and uniformly from K. Then Kn = conv {x1, …, xn} is a random polytope that approximates K (as n → ∞) with high probability. Answering a question of Rolf Schneider we determine, up to first order precision, the expectation of vol K – vol Kn when K is a smooth convex body. Moreover, this result is extended to quermassintegrals (instead of volume).
A continuous selection and a coincidence theorem are proved in H-spaces which generalize the corresponding results of Ben-El-Mechaiekh-Deguire-Granas, Browder, Ko-Tan, Lassonde, Park, Simon and Takahashi to noncompact and/or nonconvex settings. By applying the two theorems, some intersection theorems concerning sets with H-convex sections are obtained which generalize the corresponding results of Fan, Lassonde and Shih-Tan to H-spaces. Some applications to minimax principle are given.
On a convex surface S ⊂ Rd, two points x, y are conjugate if there are at least two shortest paths, called segments, from x to y. This paper is about the set of points conjugate to some fixed point xєS.
The main result of this paper is the following theorem. If P is a convex polytope of Ed with affine symmetry, then P can be illuminated by eight (d - 3)-dimensional affine subspaces (two (d- 2)-dimensional affine subspaces, resp.) lying outside P, where d ≥ 3. For d = 3 this proves Hadwiger's conjecture for symmetric convex polyhedra namely, it shows that any convex polyhedron with affine symmetry can be covered by eight smaller homothetic polyhedra. The cornerstone of the proof is a general separation method.
The purpose of this work is to investigate the relationship between Radon transforms and centrally symmetric convex bodies. Because of the injectivity properties of the Radon transform it is natural to consider transforms on the sphere separately from those on the higher order Grassmannians. Here we shall concentrate on the latter, whilst the former will be the subject of another article presently in preparation, Goodey and Weil [1991].
It is proved that for suitable a and b, n≥7, one can have Vn(An) = Vn(Bn) and for every (n–1)-dimensional subspace H of ℝn, where Bn is the unit ball of ℝn. This strengthens previous negative results on a problem of H. Busemann and C. M. Petty.
A convex compact subset of ℝd is called a convex body. The (Euclidean) surface area and volume of a convex body K are denoted s(K) and v(K) respectively. The support function of a convex body K is denned by h(K, x) = maxy∈K xty and the polar dual of K is given by K0 = {x: |xty|1, y∈K}. Double vertical bars shall denote the Euclidean length of a vector , and S shall denote the unit sphere (the Euclidean unit ball): S = {x: ║x║≤1}. We use for the mixed volume
THEOREM. Let M be a C∞ compact and strictly convex surface embedded in the euclidean space E3 or in the hyperbolic space H3. We suppose that all shadow-lines ofM are congruent. Then M is a euclidean 2-sphere or a hyperbolic 2-sphere respectively.
Let M be a convex body, i.e., a compact, convex set with non-empty interior, in n-dimensional Euclidean space En. A chord [a, b] of M is said to be an affine diameter of M, if, and only if, there exists a pair of (different) parallel supporting hyperplanes of that body, each containing one of the points a, b. The following result of Eggleston (cf. [1] and [2]) is well-known. A convex figure M Ì E2 is a triangle, if, and only if, each of its interior points belongs to exactly three affine diameters. In [3] this result is sharpened. A convex figure M Ì E2 is a triangle, if, and only if, each of its interior points belongs to at least two, but a finite number of affine diameters. A natural problem for the n-dimensional case, based on Eggleston's result, is the following (cf. also [4]). Is it true that the n-dimensional simplex is the only convex body in En such that through each interior point pass precisely 2n − l affine diameters? For the case of convex polytopes, i.e., convex bodies with a finite number of extreme points, we shall give a positive answer to this question.
Let S be the surface of the unit sphere in three-dimensional euclidean space, and let WN=(x1x2, xN)be an N-tuple of points on S. We consider the product of mutual distances and, for the variable point x on S, the product of distance from x to the points of ωN. We obtain essentially best possible bounds for maxωN p(ΩN) and for minωN maxx∈sp(x, ωN).
For a typical convex body in Ed a typical shadow boundary under parallel illumination has infinite (d - 2)-dimensional Hausdorff measurewhile having Hausdorff dimension d2.
The theorem of Aleksandrov-Fenchel-Jessen states that two convex bodies in n-dimensional Euclidean space En which, for some p l, , n - l 007D;, have equal area measures of order p (see Section 2 for a definition) differ only by a translation. Two independent proofs were given by Aleksandrov 1 and by Fenchel and Jessen 18 see also Busemann 5 (p. 70) and LeichtweiG 25 (p. 319), 26. If the boundaries of the two bodies are sufficiently smooth and of everywhere positive curvatures, then the assumption of the theorem is equivalent to saying that at points with parallel outer normals the p-th elementary symmetric functions of the principal radii of curvature of both boundary hypersurfaces are the same. For this case, Chern 6 gave a uniqueness proof by means of an integral formula.
The problem of illuminating the boundary of sets having constant width is considered and a bound for the number of directions needed is given. As a corollary, an estimate for Borsuk's partition problem is inferred. Also, the illumination number of sufficiently symmetric strictly convex bodies is determined.
Let K be a convex compact body with nonempty interior in the d-dimensional Euclidean space Rd and let x1, …, xn be random points in K, independently and uniformly distributed. Define Kn = conv {x1, …, xn}. Our main concern in this paper will be the behaviour of the deviation of vol Kn from vol K as a function of n, more precisely, the expectation of the random variable vol (K\Kn). We denote this expectation by E (K, n).
A geometric property of convex sets which is equivalent to a minimax inequality of the Ky Fan type is formulated. This property is used directly to prove minimax inequalities of the von Neumann type, minimax inequalities of the Fan-Kneser type, and fixed point theorems for inward and outward maps.
We construct a polyhedron with ten vertices of genus three which has three axes of symmetry. It is as symmetric as possible. Ten is the minimal number of vertices which a polyhedron of genus three can have. A modification of our polyhedron yields a symmetric polyhedral realization of Dyck's regular map.
We construct realizations of Dyck's regular map of genus three as polyhedra in ℝ3. One of these has one axis of symmetry of order three and three axes of symmetry of order two. The other polyhedra have three axes of symmetry. We show that a polyhedron realizing Dyck's regular map cannot have a symmetry group of order larger than six. Thus the symmetry groups of our realizations are maximal.
There exists a natural notion of convexity in the space of all compact convex sets in D. Thus, we may consider the space of all bounded closed convex families of compact convex sets. We present here a strange generic extremal behaviour of the elements of this space.