To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the existence of positive solutions to a semilinear nonlocal elliptic problem with the fractional α-Laplacian on Rn, 0 < α < n. We show that the problem has infinitely many positive solutions in $ {C^\tau}({R^n})\bigcap H_{loc}^{\alpha /2}({R^n}) $. Moreover, each of these solutions tends to some positive constant limit at infinity. We can extend our previous result about sub-elliptic problem to the nonlocal problem on Rn. We also show for α ∊ (0, 2) that in some cases, by the use of Hardy’s inequality, there is a nontrivial non-negative $ H_{loc}^{\alpha /2}({R^n}) $ weak solution to the problem
We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold M with only one end if M has asymptotically non-negative sectional curvature. On the other hand, we prove the existence of bounded non-constant minimal graphic and p-harmonic functions on rotationally symmetric Cartan-Hadamard manifolds under optimal assumptions on the sectional curvatures.
We study the mechanism of proving non-collapsing in the context of extrinsic curvature flows via the maximum principle in combination with a suitable two-point function in homogeneity greater than one. Our paper serves as the first step in this direction and we consider the case of a curve which is C2-close to a circle initially and which flows by a power greater than one of the curvature along its normal vector.
We discuss a variational model, given by a weighted sum of perimeter, bending and Riesz interaction energies, that could be considered as a toy model for charged elastic drops. The different contributions have competing preferences for strongly localized and maximally dispersed structures. We investigate the energy landscape in dependence of the size of the ‘charge’, that is, the weight of the Riesz interaction energy.
In the two-dimensional case, we first prove that for simply connected sets of small elastica energy, the elastica deficit controls the isoperimetric deficit. Building on this result, we show that for small charge the only minimizers of the full variational model are either balls or centred annuli. We complement these statements by a non-existence result for large charge. In three dimensions, we prove area and diameter bounds for configurations with small Willmore energy and show that balls are the unique minimizers of our variational model for sufficiently small charge.
Self-shrinkers are an important class of solutions to the mean curvature flow and their generalization is λ-hypersurfaces. In this paper, we study λ-hypersurfaces and give a rigidity result about complete λ-hypersurfaces.
Following an original idea of Palmas, Palomo and Romero, recently developed in [12], we study codimension two spacelike submanifolds contained in the light cone of the Lorentz-Minkowski spacetime through an approach which allows us to compute their extrinsic and intrinsic geometries in terms of a single function u. As the first application of our approach, we classify the totally umbilical ones. For codimension two compact spacelike submanifolds into the light cone, we show that they are conformally diffeomorphic to the round sphere and that they are given by an explicit embedding written in terms of u. In the last part of the paper, we consider the case where the submanifold is (marginally, weakly) trapped. In particular, we derive some non-existence results for weakly trapped submanifolds into the light cone.
We first provide a necessary and sufficient condition for a ruled real hypersurface in a nonflat complex space form to have constant mean curvature in terms of integral curves of the characteristic vector field on it. This yields a characterization of minimal ruled real hypersurfaces by circles. We next characterize the homogeneous minimal ruled real hypersurface in a complex hyperbolic space by using the notion of strong congruency of curves.
In this paper, we first derive the CR volume doubling property, CR Sobolev inequality, and the mean value inequality. We then apply them to prove the CR analogue of Yau’s conjecture on the space consisting of all pseudoharmonic functions of polynomial growth of degree at most $d$ in a complete noncompact pseudohermitian $(2n+1)$-manifold. As a by-product, we obtain the CR analogue of the volume growth estimate and the Gromov precompactness theorem.
In this paper, we study the warped structures of Finsler metrics. We obtain the differential equation that characterizes Finsler warped product metrics with vanishing Douglas curvature. By solving this equation, we obtain all Finsler warped product Douglas metrics. Some new Douglas Finsler metrics of this type are produced by using known spherically symmetric Douglas metrics.
The notion of metric compactification was introduced by Gromov and later rediscovered by Rieffel. It has been mainly studied on proper geodesic metric spaces. We present here a generalization of the metric compactification that can be applied to infinite-dimensional Banach spaces. Thereafter we give a complete description of the metric compactification of infinite-dimensional $\ell _{p}$ spaces for all $1\leqslant p<\infty$. We also give a full characterization of the metric compactification of infinite-dimensional Hilbert spaces.
We introduce the notion of Killing normal Jacobi operator for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2. The Killing normal Jacobi operator implies that the unit normal vector field N becomes 𝔄-principal or 𝔄-isotropic. Then according to each case, we give a complete classification of real hypersurfaces in Qm = SOm+2/SOmSO2 with Killing normal Jacobi operator.
We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in 𝕊3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly bi-Lipschitz Equivalences (SBE) are a weak variant of quasi-isometries, with the only requirement of still inducing bi-Lipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of boundary extensions of SBEs, reminiscent of quasi-Möbius (or quasisymmetric) mappings. We give a dimensional invariant of the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druţu.
We generalize the higher rank rigidity theorem to a class of Finsler spaces, i.e. Berwald spaces. More precisely, we prove that a complete connected Berwald space of finite volume and bounded non-positive flag curvature with rank at least two whose universal cover is irreducible is a locally symmetric space or a locally Minkowski space.
In this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.
We prove a gradient estimate for graphical spacelike mean curvature flow with a general Neumann boundary condition in dimension n = 2. This then implies that the mean curvature flow exists for all time and converges to a translating solution.
Let $Q$ be a closed manifold admitting a locally free action of a compact Lie group $G$. In this paper, we study the properties of geodesic flows on $Q$ given by suitable G-invariant Riemannian metrics. In particular, we will be interested in the existence of geodesics that are closed up to the action of some element in the group $G$, since they project to closed magnetic geodesics on the quotient orbifold $Q/G$.
Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$. We show that if a line bundle $L$ is $(n-1)$-ample, then it is $(n-1)$-positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.
This paper provides a systematic study of fundamental combinatorial properties of one-dimensional, two-sided infinite simple Toeplitz subshifts. Explicit formulas for the complexity function, the palindrome complexity function and the repetitivity function are proved. Moreover, a complete description of the de Bruijn graphs of the subshifts is given. Finally, the Boshernitzan condition is characterized in terms of combinatorial quantities, based on a recent result of Liu and Qu [Uniform convergence of Schrödinger cocycles over simple Toeplitz subshift. Ann. Henri Poincaré12(1) (2011), 153–172]. Particular simple characterizations are provided for simple Toeplitz subshifts that correspond to the orbital Schreier graphs of the family of Grigorchuk’s groups, a class of subshifts that serves as the main example throughout the paper.