To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Following Losik’s approach to Gelfand’s formal geometry, certain characteristic classes for codimension-one foliations coming from the Gelfand-Fuchs cohomology are considered. Sufficient conditions for nontriviality in terms of dynamical properties of generators of the holonomy groups are found. The nontriviality for the Reeb foliations is shown; this is in contrast with some classical theorems on the Godbillon-Vey class; for example, the Mizutani-Morita-Tsuboi theorem about triviality of the Godbillon-Vey class of foliations almost without holonomy is not true for the classes under consideration. It is shown that the considered classes are trivial for a large class of foliations without holonomy. The question of triviality is related to ergodic theory of dynamical systems on the circle and to the problem of smooth conjugacy of local diffeomorphisms. Certain classes are obstructions for the existence of transverse affine and projective connections.
We prove the existence of compact spacelike hypersurfaces with prescribed k-curvature in de Sitter space, where the prescription function depends on both space and the tilt function.
First we introduce the notion of parallel Ricci tensor ${\nabla }\mathrm {Ric}=0$ for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2 and show that the unit normal vector field N is singular. Next we give a new classification of real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2 with parallel Ricci tensor.
In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric $\omega $ such that $(T_X,\omega )$ is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on $T_X$.
In this work, we obtain a local maximum principle along the Ricci flow $g(t)$ under the condition that $\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$ for $t>0$ for some constant ${\alpha }>0$. As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for $t>0$, provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature. By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for $t>0$.
We investigate parallel Lagrangian foliations on Kähler manifolds. On the one hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat. On the other hand, we give many examples of parallel Lagrangian foliations on closed flat Kähler manifolds which are not tori. These examples arise from Anosov automorphisms preserving a Kähler form.
We investigate real hypersurfaces in nonflat complex space forms attaining equality in an inequality involving the contact δ-invariant δc(2) introduced by Chen and Mihai in [3].
We prove some results for the solitons of the Ricci–Bourguignon flow, generalizing the corresponding results for Ricci solitons. Taking motivation from Ricci almost solitons, we then introduce the notion of Ricci–Bourguignon almost solitons and prove some results about them that generalize previous results for Ricci almost solitons. We also derive integral formulas for compact gradient Ricci–Bourguignon solitons and compact gradient Ricci–Bourguignon almost solitons. Finally, using the integral formula, we show that a compact gradient Ricci–Bourguignon almost soliton is isometric to a Euclidean sphere if it has constant scalar curvature or its associated vector field is conformal.
Under suitable assumptions on the family of anisotropies, we prove the existence of a weak global 1/(n+1)-Hölder continuous in time mean curvature flow with mobilities of a bounded anisotropic partition in any dimension using the method of minimizing movements. The result is extended to the case when suitable driving forces are present. We improve the Hölder exponent to 1/2 in the case of partitions with the same anisotropy and the same mobility and provide a weak comparison result in this setting for a weak anisotropic mean curvature flow of a partition and an anisotropic mean curvature two-phase flow.
We generalize Uhlenbeck’s generator theorem of ${\mathcal{L}}^{-}\operatorname{U}_{n}$ to the full rational loop group ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{C}$ and its subgroups ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{R}$, ${\mathcal{L}}^{-}\operatorname{U}_{p,q}$: they are all generated by just simple projective loops. Recall that Terng–Uhlenbeck studied the dressing actions of such projective loops as generalized Bäcklund transformations for integrable systems. Our result makes a nice supplement: any rational dressing is the composition of these Bäcklund transformations. This conclusion is surprising in the sense that Lie theory suggests the indispensable role of nilpotent loops in the case of noncompact reality conditions, and nilpotent dressings appear quite complicated and mysterious. The sacrifice is to introduce some extra fake singularities. So we also propose a set of generators if fake singularities are forbidden. A very geometric and physical construction of $\operatorname{U}_{p,q}$ is obtained as a by-product, generalizing the classical construction of unitary groups.
The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.
We derive estimates relating the values of a solution at any two points to the distance between the points for quasilinear parabolic equations on compact Riemannian manifolds under Ricci flow.
We first introduce the weighted averaged projection sequence in $\text{CAT}(\unicode[STIX]{x1D705})$ spaces and then we establish some inequalities for the weighted averaged projection sequence. Using the inequalities, we prove the asymptotic regularity and the $\unicode[STIX]{x1D6E5}$-convergence of the weighted averaged projection sequence. Furthermore, we prove the strong convergence of the sequence under certain regularity or compactness conditions on $\text{CAT}(\unicode[STIX]{x1D705})$ spaces.
In this paper, we study Finsler warped product metrics with relatively isotropic Landsberg curvature. We obtain the differential equations that characterize such metrics. Then we give some examples.
A Willmore surface $y:M\rightarrow S^{n+2}$ has a natural harmonic oriented conformal Gauss map $Gr_{y}:M\rightarrow SO^{+}(1,n+3)/SO(1,3)\times SO(n)$, which maps each point $p\in M$ to its oriented mean curvature 2-sphere at $p$. An easy observation shows that all conformal Gauss maps of Willmore surfaces satisfy a restricted nilpotency condition, which will be called “strongly conformally harmonic.” The goal of this paper is to characterize those strongly conformally harmonic maps from a Riemann surface $M$ to $SO^{+}(1,n+3)/SO^{+}(1,3)\times SO(n)$, which are the conformal Gauss maps of some Willmore surface in $S^{n+2}.$ It turns out that generically, the condition of being strongly conformally harmonic suffices to be associated with a Willmore surface. The exceptional case will also be discussed.
In this note, we prove that a four-dimensional compact oriented half-conformally flat Riemannian manifold M4 is topologically $\mathbb{S}^{4}$ or $\mathbb{C}\mathbb{P}^{2}$, provided that the sectional curvatures all lie in the interval $\left[ {{{3\sqrt {3 - 5} } \over 4}, 1} \right]$ In addition, we use the notion of biorthogonal (sectional) curvature to obtain a pinching condition which guarantees that a four-dimensional compact manifold is homeomorphic to a connected sum of copies of the complex projective plane or the 4-sphere.
We study immersed surfaces in ${\mathbb R}^3$ that are critical points of the Willmore functional under boundary constraints. The two cases considered are when the surface meets a plane orthogonally along the boundary and when the boundary is contained in a line. In both cases we derive weak forms of the resulting free boundary conditions and prove regularity by reflection.
We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterise the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces.
This work is concerned with Bielawski’s hyperkähler slices in the cotangent bundles of homogeneous affine varieties. One can associate such a slice with the data of a complex semisimple Lie group $G$, a reductive subgroup $H\subseteq G$, and a Slodowy slice $S\subseteq \mathfrak{g}:=\text{Lie}(G)$, defining it to be the hyperkähler quotient of $T^{\ast }(G/H)\times (G\times S)$ by a maximal compact subgroup of $G$. This hyperkähler slice is empty in some of the most elementary cases (e.g., when $S$ is regular and $(G,H)=(\text{SL}_{n+1},\text{GL}_{n})$, $n\geqslant 3$), prompting us to seek necessary and sufficient conditions for non-emptiness.
We give a spherical-geometric characterization of the non-empty hyperkähler slices that arise when $S=S_{\text{reg}}$ is a regular Slodowy slice, proving that non-emptiness is equivalent to the so-called $\mathfrak{a}$-regularity of $(G,H)$. This $\mathfrak{a}$-regularity condition is formulated in several equivalent ways, one being a concrete condition on the rank and complexity of $G/H$. We also provide a classification of the $\mathfrak{a}$-regular pairs $(G,H)$ in which $H$ is a reductive spherical subgroup. Our arguments make essential use of Knop’s results on moment map images and Losev’s algorithm for computing Cartan spaces.