To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show continuity under equivariant Gromov–Hausdorff convergence of the critical exponent of discrete, non-elementary, torsion-free, quasiconvex-cocompact groups with uniformly bounded codiameter acting on uniformly Gromov-hyperbolic metric spaces.
The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz graphs of codimension $k\leq n$ in sub-Riemannian Heisenberg groups ${\mathbb H}^{n}$. For the purpose of proving such a result, we settle several related questions pertaining both to the theory of intrinsic Lipschitz graphs and to the one of currents. First, we prove an extension result for intrinsic Lipschitz graphs as well as a uniform approximation theorem by means of smooth graphs: both of these results stem from a new definition (equivalent to the one introduced by B. Franchi, R. Serapioni and F. Serra Cassano) of intrinsic Lipschitz graphs and are valid for a more general class of intrinsic Lipschitz graphs in Carnot groups. Second, our proof of Rademacher’s theorem heavily uses the language of currents in Heisenberg groups: one key result is, for us, a version of the celebrated constancy theorem. Inasmuch as Heisenberg currents are defined in terms of Rumin’s complex of differential forms, we also provide a convenient basis of Rumin’s spaces. Eventually, we provide some applications of Rademacher’s theorem including a Lusin-type result for intrinsic Lipschitz graphs, the equivalence between ${\mathbb H}$-rectifiability and ‘Lipschitz’ ${\mathbb H}$-rectifiability and an area formula for intrinsic Lipschitz graphs in Heisenberg groups.
A Simons type formula for submanifolds with parallel normalized mean curvature vector field (pnmc submanifolds) in the product spaces $M^{n}(c)\times \mathbb {R}$, where $M^{n}(c)$ is a space form with constant sectional curvature $c\in \{-1,1\}$, it is shown. As an application is obtained rigidity results for submanifolds with constant second mean curvature.
We consider a variant of a classical coverage process, the Boolean model in $\mathbb{R}^d$. Previous efforts have focused on convergence of the unoccupied region containing the origin to a well-studied limit C. We study the intersection of sets centered at points of a Poisson point process confined to the unit ball. Using a coupling between the intersection model and the original Boolean model, we show that the scaled intersection converges weakly to the same limit C. Along the way, we present some tools for studying statistics of a class of intersection models.
The $\rho $-Einstein soliton is a self-similar solution of the Ricci–Bourguignon flow, which includes or relates to some famous geometric solitons, for example, the Ricci soliton and the Yamabe soliton, and so on. This paper deals with the study of $\rho $-Einstein solitons on Sasakian manifolds. First, we prove that if a Sasakian manifold M admits a nontrivial$\rho $-Einstein soliton $(M,g,V,\lambda )$, then M is $\mathcal {D}$-homothetically fixed null $\eta $-Einstein and the soliton vector field V is Jacobi field along trajectories of the Reeb vector field $\xi $, nonstrict infinitesimal contact transformation and leaves $\varphi $ invariant. Next, we find two sufficient conditions for a compact $\rho $-Einstein almost soliton to be trivial (Einstein) under the assumption that the soliton vector field is an infinitesimal contact transformation or is parallel to the Reeb vector field $\xi $.
For each $k\geq 3$, we construct a $1$-parameter family of complete properly Alexandrov-embedded minimal surfaces in the Riemannian product space $\mathbb {H}^2\times \mathbb {R}$ with genus $1$ and k embedded ends asymptotic to vertical planes. We also obtain complete minimal surfaces with genus $1$ and $2k$ ends in the quotient of $\mathbb {H}^2\times \mathbb {R}$ by an arbitrary vertical translation. They all have dihedral symmetry with respect to k vertical planes, as well as finite total curvature $-4k\pi $. Finally, we provide examples of complete properly Alexandrov-embedded minimal surfaces with finite total curvature with genus $1$ in quotients of $\mathbb {H}^2\times \mathbb {R}$ by the action of a hyperbolic or parabolic translation.
In this paper we are interested in comparing the spectra of two elliptic operators acting on a closed minimal submanifold of the Euclidean unit sphere. Using an approach introduced by Savo in [A Savo. Index Bounds for Minimal Hypersurfaces of the Sphere. Indiana Univ. Math. J. 59 (2010), 823-837.], we are able to compare the eigenvalues of the stability operator acting on sections of the normal bundle and the Hodge Laplacian operator acting on $1$-forms. As a byproduct of the technique and under a suitable hypothesis on the Ricci curvature of the submanifold we obtain that its first Betti's number is bounded from above by a multiple of the Morse index, which provide evidence for a well-known conjecture of Schoen and Marques & Neves in the setting of higher codimension.
Narasihman and Ramanan proved in [Amer. J. Math. 83(1961), 563–572] that an arbitrary connection in a vector bundle over a base space B can be obtained as the pull-back (via a correctly chosen classifying map from B into the appropriate Grassmannian) of the universal connection in the universal bundle over the Grassmannian. The purpose of this paper is to relate geometric properties of the classifying map to geometric properties of the pulled-back connection. More specifically, we describe conditions on the classifying map under which the pulled-back connection: (1) is fat (in the sphere bundle), (2) has a parallel curvature tensor, and (3) induces a connection metric with nonnegative sectional curvature on the vector bundle (or positive sectional curvature on the sphere bundle).
This paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces.
We study families of metrics on automorphic vector bundles associated with representations of the modular group. These metrics are defined using an Eisenstein series construction. We show that in certain cases, the residue of these Eisenstein metrics at their rightmost pole is a harmonic metric for the underlying representation of the modular group. The last section of the paper considers the case of a family of representations that are indecomposable but not irreducible. The analysis of the corresponding Eisenstein metrics, and the location of their rightmost pole, is an open question whose resolution depends on the asymptotics of matrix-valued Kloosterman sums.
Consider a homogeneous Poisson point process of the Euclidean plane and its Voronoi tessellation. The present note discusses the properties of two stationary point processes associated with the latter and depending on a parameter $\theta$. The first is the set of points that belong to some one-dimensional facet of the Voronoi tessellation and such that the angle with which they see the two nuclei defining the facet is $\theta$. The main question of interest on this first point process is its intensity. The second point process is that of the intersections of the said tessellation with a straight line having a random orientation. Its intensity is well known. The intersection points almost surely belong to one-dimensional facets. The main question here concerns the Palm distribution of the angle with which the points of this second point process see the two nuclei associated with the facet. We will give answers to these two questions and briefly discuss their practical motivations. We also discuss natural extensions to three dimensions.
In this paper, we classify the three-dimensional partially hyperbolic diffeomorphisms whose stable, unstable, and central distributions $E^s$, $E^u$, and $E^c$ are smooth, such that $E^s\oplus E^u$ is a contact distribution, and whose non-wandering set equals the whole manifold. We prove that up to a finite quotient or a finite power, they are smoothly conjugated either to a time-map of an algebraic contact-Anosov flow, or to an affine partially hyperbolic automorphism of a nil-${\mathrm {Heis}}{(3)}$-manifold. The rigid geometric structure induced by the invariant distributions plays a fundamental part in the proof.
A protagonist here is a new-type invariant for type II degenerations of K3 surfaces, which is explicit piecewise linear convex function from the interval with at most $18$ nonlinear points. Forgetting its actual function behavior, it also classifies the type II degenerations into several combinatorial types, depending on the type of root lattices as appeared in classical examples.
From differential geometric viewpoint, the function is obtained as the density function of the limit measure on the collapsing hyper-Kähler metrics to conjectural segments, as in [HSZ19]. On the way, we also reconstruct a moduli compactification of elliptic K3 surfaces by [AB19], [ABE20], [Brun15] in a more elementary manner, and analyze the cusps more explicitly.
We also interpret the glued hyper-Kähler fibration of [HSVZ18] as a special case from our viewpoint, and discuss other cases, and possible relations with Landau–Ginzburg models in the mirror symmetry context.
In this paper we study a normalized anisotropic Gauss curvature flow of strictly convex, closed hypersurfaces in the Euclidean space. We prove that the flow exists for all time and converges smoothly to the unique, strictly convex solution of a Monge-Ampère type equation and we obtain a new existence result of solutions to the Dual Orlicz-Minkowski problem for smooth measures, especially for even smooth measures.
We establish a straightforward estimate for the number of open sets with fundamental group constraints needed to cover the total space of fibrations. This leads to vanishing results for simplicial volume and minimal volume entropy, e.g., for certain mapping tori.
We explicitly determine the defining relations of all quantum symmetric pair coideal subalgebras of quantised enveloping algebras of Kac–Moody type. Our methods are based on star products on noncommutative ${\mathbb N}$-graded algebras. The resulting defining relations are expressed in terms of continuous q-Hermite polynomials and a new family of deformed Chebyshev polynomials.
Let $\operatorname {\mathrm {{\rm G}}}(n)$ be equal to either $\operatorname {\mathrm {{\rm PO}}}(n,1),\operatorname {\mathrm {{\rm PU}}}(n,1)$ or $\operatorname {\mathrm {\textrm {PSp}}}(n,1)$ and let $\Gamma \leq \operatorname {\mathrm {{\rm G}}}(n)$ be a uniform lattice. Denote by $\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$ the hyperbolic space associated to $\operatorname {\mathrm {{\rm G}}}(n)$, where $\operatorname {\mathrm {{\rm K}}}$ is a division algebra over the reals of dimension d. Assume $d(n-1) \geq 2$.
In this article we generalise natural maps to measurable cocycles. Given a standard Borel probability $\Gamma $-space $(X,\mu _X)$, we assume that a measurable cocycle $\sigma :\Gamma \times X \rightarrow \operatorname {\mathrm {{\rm G}}}(m)$ admits an essentially unique boundary map $\phi :\partial _\infty \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \partial _\infty \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ whose slices $\phi _x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ are atomless for almost every $x \in X$. Then there exists a $\sigma $-equivariant measurable map $F: \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ whose slices $F_x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ are differentiable for almost every $x \in X$ and such that $\operatorname {\mathrm {\textrm {Jac}}}_a F_x \leq 1$ for every $a \in \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$ and almost every $x \in X$. This allows us to define the natural volume $\operatorname {\mathrm {\textrm {NV}}}(\sigma )$ of the cocycle $\sigma $. This number satisfies the inequality $\operatorname {\mathrm {\textrm {NV}}}(\sigma ) \leq \operatorname {\mathrm {\textrm {Vol}}}(\Gamma \backslash \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}})$. Additionally, the equality holds if and only if $\sigma $ is cohomologous to the cocycle induced by the standard lattice embedding $i:\Gamma \rightarrow \operatorname {\mathrm {{\rm G}}}(n) \leq \operatorname {\mathrm {{\rm G}}}(m)$, modulo possibly a compact subgroup of $\operatorname {\mathrm {{\rm G}}}(m)$ when $m>n$.
Given a continuous map $f:M \rightarrow N$ between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.
Many bundle gerbes are either infinite-dimensional, or finite-dimensional but built using submersions that are far from being fibre bundles. Murray and Stevenson [‘A note on bundle gerbes and infinite-dimensionality’, J. Aust. Math. Soc.90(1) (2011), 81–92] proved that gerbes on simply-connected manifolds, built from finite-dimensional fibre bundles with connected fibres, always have a torsion $DD$-class. I prove an analogous result for a wide class of gerbes built from principal bundles, relaxing the requirements on the fundamental group of the base and the connected components of the fibre, allowing both to be nontrivial. This has consequences for possible models for basic gerbes, the classification of crossed modules of finite-dimensional Lie groups, the coefficient Lie-2-algebras for higher gauge theory on principal 2-bundles and finite-dimensional twists of topological K-theory.
We present self-contained proofs of the stability of the constants in the volume doubling property and the Poincaré and Sobolev inequalities for Riemannian approximations in Carnot groups. We use an explicit Riemannian approximation based on the Lie algebra structure that is suited for studying nonlinear subelliptic partial differential equations. Our approach is independent of the results obtained in [11].
In this work, we consider oriented compact manifolds which possess convex mean curvature boundary, positive scalar curvature and admit a map to $\mathbb {D}^{2}\times T^{n}$ with non-zero degree, where $\mathbb {D}^{2}$ is a disc and $T^{n}$ is an $n$-dimensional torus. We prove the validity of an inequality involving a mean of the area and the length of the boundary of immersed discs whose boundaries are homotopically non-trivial curves. We also prove a rigidity result for the equality case when the boundary is strongly totally geodesic. This can be viewed as a partial generalization of a result due to Lucas Ambrózio in (2015, J. Geom. Anal., 25, 1001–1017) to higher dimensions.