We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to study complete (noncompact) m-quasi-Einstein manifolds with λ=0 satisfying a fourth-order vanishing condition on the Weyl tensor and zero radial Weyl curvature. In this case, we are able to prove that an m-quasi-Einstein manifold (m>1) with λ=0 on a simply connected n-dimensional manifold(Mn, g), (n ≥ 4), of nonnegative Ricci curvature and zero radial Weyl curvature must be a warped product with (n–1)–dimensional Einstein fiber, provided that M has fourth-order divergence-free Weyl tensor (i.e. div4W =0).
We characterise the Zoll Riemannian metrics on a given simply connected spin closed manifold as those Riemannian metrics for which two suitable min-max values in a finite dimensional loop space coincide. We also show that on odd dimensional Riemannian spheres, when certain pairs of min-max values in the loop space coincide, every point lies on a closed geodesic.
Given a compact Kähler manifold X, it is shown that pairs of the form $(E,\, D)$, where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on E, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.
We study projectional properties of Poisson cut-out sets E in non-Euclidean spaces. In the first Heisenbeg group \[\mathbb{H} = \mathbb{C} \times \mathbb{R}\], endowed with the Korányi metric, we show that the Hausdorff dimension of the vertical projection \[\pi (E)\] (projection along the center of \[\mathbb{H}\]) almost surely equals \[\min \{ 2,{\dim _\operatorname{H} }(E)\} \] and that \[\pi (E)\] has non-empty interior if \[{\dim _{\text{H}}}(E) > 2\]. As a corollary, this allows us to determine the Hausdorff dimension of E with respect to the Euclidean metric in terms of its Heisenberg Hausdorff dimension \[{\dim _{\text{H}}}(E)\].
We also study projections in the one-point compactification of the Heisenberg group, that is, the 3-sphere \[{{\text{S}}^3}\] endowed with the visual metric d obtained by identifying \[{{\text{S}}^3}\] with the boundary of the complex hyperbolic plane. In \[{{\text{S}}^3}\], we prove a projection result that holds simultaneously for all radial projections (projections along so called “chains”). This shows that the Poisson cut-outs in \[{{\text{S}}^3}\] satisfy a strong version of the Marstrand’s projection theorem, without any exceptional directions.
Consider a holomorphic submersion between compact Kähler manifolds, such that each fibre admits a constantscalar curvature Kähler metric. When the fibres admit continuous automorphisms, a choice of fibrewise constant scalarcurvature Kähler metric is not unique. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kähler metric satisfying a geometric partial differential equation. The condition generalises the Hermite-Einstein condition for a holomorphic vector bundle through the induced fibrewise Fubini-Study metric on the associated projectivisation.
We prove various foundational analytic results concerning optimal symplectic connections. Our main result proves that optimal symplectic connections are unique, up to the action of the automorphism group of the submersion, when they exist. Thus optimal symplectic connections are canonical relatively Kähler metrics when they exist. In addition, we show that the existence of an optimal symplectic connection forces the automorphism group of the submersion to be reductive and that an optimal symplectic connection is automatically invariant under a maximal compact subgroup of this automorphism group. We also prove that when a submersion admits an optimal symplectic connection, it achieves the absolute minimum of a natural log norm functional, which we define.
We prove that any metric with curvature less than or equal to $-1$ (in the sense of A. D. Alexandrov) on a closed surface of genus greater than $1$ is isometric to the induced intrinsic metric on a space-like convex surface in a Lorentzian manifold of dimension $(2+1)$ with sectional curvature $-1$. The proof is by approximation, using a result about isometric immersion of smooth metrics by Labourie and Schlenker.
In this paper, by applying for a new approach of the so-called Tsinghua principle, we prove the nonexistence of locally conformally flat real hypersurfaces in both the m-dimensional complex quadric $Q^m$ and the complex hyperbolic quadric $Q^{m\ast }$ for $m\ge 3$.
By means of a counter-example, we show that the Reilly theorem for the upper bound of the first non-trivial eigenvalue of the Laplace operator of a compact submanifold of Euclidean space (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) does not work for a (codimension ⩾2) compact spacelike submanifold of Lorentz–Minkowski spacetime. In the search of an alternative result, it should be noted that the original technique in (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) is not applicable for a compact spacelike submanifold of Lorentz–Minkowski spacetime. In this paper, a new technique, based on an integral formula on a compact spacelike section of the light cone in Lorentz–Minkowski spacetime is developed. The technique is genuine in our setting, that is, it cannot be extended to another semi-Euclidean spaces of higher index. As a consequence, a family of upper bounds for the first eigenvalue of the Laplace operator of a compact spacelike submanifold of Lorentz–Minkowski spacetime is obtained. The equality for one of these inequalities is geometrically characterized. Indeed, the eigenvalue achieves one of these upper bounds if and only if the compact spacelike submanifold lies minimally in a hypersphere of certain spacelike hyperplane. On the way, the Reilly original result is reproved if a compact submanifold of a Euclidean space is naturally seen as a compact spacelike submanifold of Lorentz–Minkowski spacetime through a spacelike hyperplane.
We first establish a family of sharp Caffarelli–Kohn–Nirenberg type inequalities (shortly, sharp CKN inequalities) on the Euclidean spaces and then extend them to the setting of Cartan–Hadamard manifolds with the same best constant. The quantitative version of these inequalities also is proved by adding a non-negative remainder term in terms of the sectional curvature of manifolds. We next prove several rigidity results for complete Riemannian manifolds supporting the Caffarelli–Kohn–Nirenberg type inequalities with the same sharp constant as in the Euclidean space of the same dimension. Our results illustrate the influence of curvature to the sharp CKN inequalities on the Riemannian manifolds. They extend recent results of Kristály (J. Math. Pures Appl. 119 (2018), 326–346) to a larger class of the sharp CKN inequalities.
Following Losik’s approach to Gelfand’s formal geometry, certain characteristic classes for codimension-one foliations coming from the Gelfand-Fuchs cohomology are considered. Sufficient conditions for nontriviality in terms of dynamical properties of generators of the holonomy groups are found. The nontriviality for the Reeb foliations is shown; this is in contrast with some classical theorems on the Godbillon-Vey class; for example, the Mizutani-Morita-Tsuboi theorem about triviality of the Godbillon-Vey class of foliations almost without holonomy is not true for the classes under consideration. It is shown that the considered classes are trivial for a large class of foliations without holonomy. The question of triviality is related to ergodic theory of dynamical systems on the circle and to the problem of smooth conjugacy of local diffeomorphisms. Certain classes are obstructions for the existence of transverse affine and projective connections.
We prove the existence of compact spacelike hypersurfaces with prescribed k-curvature in de Sitter space, where the prescription function depends on both space and the tilt function.
First we introduce the notion of parallel Ricci tensor ${\nabla }\mathrm {Ric}=0$ for real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2 and show that the unit normal vector field N is singular. Next we give a new classification of real hypersurfaces in the complex quadric Qm = SOm+2/SOmSO2 with parallel Ricci tensor.
In this paper, we prove that if a compact Kähler manifold X has a smooth Hermitian metric $\omega $ such that $(T_X,\omega )$ is uniformly RC-positive, then X is projective and rationally connected. Conversely, we show that, if a projective manifold X is rationally connected, then there exists a uniformly RC-positive complex Finsler metric on $T_X$.
In this work, we obtain a local maximum principle along the Ricci flow $g(t)$ under the condition that $\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$ for $t>0$ for some constant ${\alpha }>0$. As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for $t>0$, provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature. By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for $t>0$.
We investigate parallel Lagrangian foliations on Kähler manifolds. On the one hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat. On the other hand, we give many examples of parallel Lagrangian foliations on closed flat Kähler manifolds which are not tori. These examples arise from Anosov automorphisms preserving a Kähler form.
We investigate real hypersurfaces in nonflat complex space forms attaining equality in an inequality involving the contact δ-invariant δc(2) introduced by Chen and Mihai in [3].
We prove some results for the solitons of the Ricci–Bourguignon flow, generalizing the corresponding results for Ricci solitons. Taking motivation from Ricci almost solitons, we then introduce the notion of Ricci–Bourguignon almost solitons and prove some results about them that generalize previous results for Ricci almost solitons. We also derive integral formulas for compact gradient Ricci–Bourguignon solitons and compact gradient Ricci–Bourguignon almost solitons. Finally, using the integral formula, we show that a compact gradient Ricci–Bourguignon almost soliton is isometric to a Euclidean sphere if it has constant scalar curvature or its associated vector field is conformal.
Under suitable assumptions on the family of anisotropies, we prove the existence of a weak global 1/(n+1)-Hölder continuous in time mean curvature flow with mobilities of a bounded anisotropic partition in any dimension using the method of minimizing movements. The result is extended to the case when suitable driving forces are present. We improve the Hölder exponent to 1/2 in the case of partitions with the same anisotropy and the same mobility and provide a weak comparison result in this setting for a weak anisotropic mean curvature flow of a partition and an anisotropic mean curvature two-phase flow.
We generalize Uhlenbeck’s generator theorem of ${\mathcal{L}}^{-}\operatorname{U}_{n}$ to the full rational loop group ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{C}$ and its subgroups ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{R}$, ${\mathcal{L}}^{-}\operatorname{U}_{p,q}$: they are all generated by just simple projective loops. Recall that Terng–Uhlenbeck studied the dressing actions of such projective loops as generalized Bäcklund transformations for integrable systems. Our result makes a nice supplement: any rational dressing is the composition of these Bäcklund transformations. This conclusion is surprising in the sense that Lie theory suggests the indispensable role of nilpotent loops in the case of noncompact reality conditions, and nilpotent dressings appear quite complicated and mysterious. The sacrifice is to introduce some extra fake singularities. So we also propose a set of generators if fake singularities are forbidden. A very geometric and physical construction of $\operatorname{U}_{p,q}$ is obtained as a by-product, generalizing the classical construction of unitary groups.
The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.