We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine all three-dimensional homogeneous and $1$-curvature homogeneous Lorentzian metrics which are critical for a quadratic curvature functional. As a result, we show that any quadratic curvature functional admits different non-Einstein homogeneous critical metrics and that there exist homogeneous metrics which are critical for all quadratic curvature functionals without being Einstein.
Let $(\mathbb {D}^2,\mathscr {F},\{0\})$ be a singular holomorphic foliation on the unit bidisc $\mathbb {D}^2$ defined by the linear vector field
$$ \begin{align*} z \frac{\partial}{\partial z}+ \unicode{x3bb} w \frac{\partial}{\partial w}, \end{align*} $$
where $\unicode{x3bb} \in \mathbb {C}^*$. Such a foliation has a non-degenerate singularity at the origin ${0:=(0,0) \in \mathbb {C}^2}$. Let T be a harmonic current directed by $\mathscr {F}$ which does not give mass to any of the two separatrices $(z=0)$ and $(w=0)$. Assume $T\neq 0$. The Lelong number of T at $0$ describes the mass distribution on the foliated space. In 2014 Nguyên (see [16]) proved that when $\unicode{x3bb} \notin \mathbb {R}$, that is, when $0$ is a hyperbolic singularity, the Lelong number at $0$ vanishes. Suppose the trivial extension $\tilde {T}$ across $0$ is $dd^c$-closed. For the non-hyperbolic case $\unicode{x3bb} \in \mathbb {R}^*$, we prove that the Lelong number at $0$:
(1) is strictly positive if $\unicode{x3bb}>0$;
(2) vanishes if $\unicode{x3bb} \in \mathbb {Q}_{<0}$;
(3) vanishes if $\unicode{x3bb} <0$ and T is invariant under the action of some cofinite subgroup of the monodromy group.
Campana introduced the class of special varieties as the varieties admitting no Bogomolov sheaves, i.e. rank-one coherent subsheaves of maximal Kodaira dimension in some exterior power of the cotangent bundle. Campana raised the question of whether one can replace the Kodaira dimension by the numerical dimension in this characterization. We answer partially this question showing that a projective manifold admitting a rank-one coherent subsheaf of the cotangent bundle with numerical dimension one is not special. We also establish the analytic characterization with the non-existence of Zariski dense entire curve and the arithmetic version with non-potential density in the (split) function field setting. Finally, we conclude with a few comments for higher codimensional foliations which may provide some evidence towards a generalization of the aforementioned results.
In 1977, Gauduchon proved that on every compact hermitian manifold $(X, \omega )$ there exists a conformally equivalent hermitian metric $\omega _\mathrm {G}$ which satisfies $\mathrm {dd}^{\mathrm {c}} \omega _\mathrm {G}^{n-1} = 0$. In this note, we extend this result to irreducible compact singular hermitian varieties which admit a smoothing.
In this work, we study foliations of arbitrary codimension $\mathfrak{F}$ with integrable normal bundles on complete Riemannian manifolds. We obtain a necessary and sufficient condition for $\mathfrak{F}$ to be totally geodesic. For this, we introduce a special number $\mathfrak{G}_{\mathfrak{F}}^{\alpha}$ that measures when the foliation ceases to be totally geodesic. Furthermore, applying some maximum principle we deduce geometric properties for $\mathfrak{F}$. We conclude with a geometrical version of Novikov’s theorem (Trans. Moscow Math. Soc. (1965), 268–304), for Riemannian compact manifolds of arbitrary dimension.
We provide examples of infinitesimally Hilbertian, rectifiable, Ahlfors regular metric measure spaces having pmGH-tangents that are not infinitesimally Hilbertian.
As is well known, the holomorphic sectional curvature is just half of the sectional curvature in a holomorphic plane section on a Kähler manifold (Zheng, Complex differential geometry (2000)). In this article, we prove that if the holomorphic sectional curvature is half of the sectional curvature in a holomorphic plane section on a Hermitian manifold then the Hermitian metric is Kähler.
In our previous paper (Gaster et al., 2018, arXiv:1810.11932), we showed that the theory of harmonic maps between Riemannian manifolds, especially hyperbolic surfaces, may be discretized by introducing a triangulation of the domain manifold with independent vertex and edge weights. In the present paper, we study convergence of the discrete theory back to the smooth theory when taking finer and finer triangulations, in the general Riemannian setting. We present suitable conditions on the weighted triangulations that ensure convergence of discrete harmonic maps to smooth harmonic maps, introducing the notion of (almost) asymptotically Laplacian weights, and we offer a systematic method to construct such weighted triangulations in the two-dimensional case. Our computer software Harmony successfully implements these methods to compute equivariant harmonic maps in the hyperbolic plane.
We investigate the geometry of Hermitian manifolds endowed with a compact Lie group action by holomorphic isometries with principal orbits of codimension one. In particular, we focus on a special class of these manifolds constructed by following Bérard-Bergery which includes, among the others, the holomorphic line bundles on $\mathbb {C}\mathbb {P}^{m-1}$, the linear Hopf manifolds and the Hirzebruch surfaces. We characterize their invariant special Hermitian metrics, such as balanced, Kähler-like, pluriclosed, locally conformally Kähler, Vaisman and Gauduchon. Furthermore, we construct new examples of cohomogeneity one Hermitian metrics solving the second-Chern–Einstein equation and the constant Chern-scalar curvature equation.
We show continuity under equivariant Gromov–Hausdorff convergence of the critical exponent of discrete, non-elementary, torsion-free, quasiconvex-cocompact groups with uniformly bounded codiameter acting on uniformly Gromov-hyperbolic metric spaces.
The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz graphs of codimension $k\leq n$ in sub-Riemannian Heisenberg groups ${\mathbb H}^{n}$. For the purpose of proving such a result, we settle several related questions pertaining both to the theory of intrinsic Lipschitz graphs and to the one of currents. First, we prove an extension result for intrinsic Lipschitz graphs as well as a uniform approximation theorem by means of smooth graphs: both of these results stem from a new definition (equivalent to the one introduced by B. Franchi, R. Serapioni and F. Serra Cassano) of intrinsic Lipschitz graphs and are valid for a more general class of intrinsic Lipschitz graphs in Carnot groups. Second, our proof of Rademacher’s theorem heavily uses the language of currents in Heisenberg groups: one key result is, for us, a version of the celebrated constancy theorem. Inasmuch as Heisenberg currents are defined in terms of Rumin’s complex of differential forms, we also provide a convenient basis of Rumin’s spaces. Eventually, we provide some applications of Rademacher’s theorem including a Lusin-type result for intrinsic Lipschitz graphs, the equivalence between ${\mathbb H}$-rectifiability and ‘Lipschitz’ ${\mathbb H}$-rectifiability and an area formula for intrinsic Lipschitz graphs in Heisenberg groups.
A Simons type formula for submanifolds with parallel normalized mean curvature vector field (pnmc submanifolds) in the product spaces $M^{n}(c)\times \mathbb {R}$, where $M^{n}(c)$ is a space form with constant sectional curvature $c\in \{-1,1\}$, it is shown. As an application is obtained rigidity results for submanifolds with constant second mean curvature.
We consider a variant of a classical coverage process, the Boolean model in $\mathbb{R}^d$. Previous efforts have focused on convergence of the unoccupied region containing the origin to a well-studied limit C. We study the intersection of sets centered at points of a Poisson point process confined to the unit ball. Using a coupling between the intersection model and the original Boolean model, we show that the scaled intersection converges weakly to the same limit C. Along the way, we present some tools for studying statistics of a class of intersection models.
The $\rho $-Einstein soliton is a self-similar solution of the Ricci–Bourguignon flow, which includes or relates to some famous geometric solitons, for example, the Ricci soliton and the Yamabe soliton, and so on. This paper deals with the study of $\rho $-Einstein solitons on Sasakian manifolds. First, we prove that if a Sasakian manifold M admits a nontrivial$\rho $-Einstein soliton $(M,g,V,\lambda )$, then M is $\mathcal {D}$-homothetically fixed null $\eta $-Einstein and the soliton vector field V is Jacobi field along trajectories of the Reeb vector field $\xi $, nonstrict infinitesimal contact transformation and leaves $\varphi $ invariant. Next, we find two sufficient conditions for a compact $\rho $-Einstein almost soliton to be trivial (Einstein) under the assumption that the soliton vector field is an infinitesimal contact transformation or is parallel to the Reeb vector field $\xi $.
For each $k\geq 3$, we construct a $1$-parameter family of complete properly Alexandrov-embedded minimal surfaces in the Riemannian product space $\mathbb {H}^2\times \mathbb {R}$ with genus $1$ and k embedded ends asymptotic to vertical planes. We also obtain complete minimal surfaces with genus $1$ and $2k$ ends in the quotient of $\mathbb {H}^2\times \mathbb {R}$ by an arbitrary vertical translation. They all have dihedral symmetry with respect to k vertical planes, as well as finite total curvature $-4k\pi $. Finally, we provide examples of complete properly Alexandrov-embedded minimal surfaces with finite total curvature with genus $1$ in quotients of $\mathbb {H}^2\times \mathbb {R}$ by the action of a hyperbolic or parabolic translation.
In this paper we are interested in comparing the spectra of two elliptic operators acting on a closed minimal submanifold of the Euclidean unit sphere. Using an approach introduced by Savo in [A Savo. Index Bounds for Minimal Hypersurfaces of the Sphere. Indiana Univ. Math. J. 59 (2010), 823-837.], we are able to compare the eigenvalues of the stability operator acting on sections of the normal bundle and the Hodge Laplacian operator acting on $1$-forms. As a byproduct of the technique and under a suitable hypothesis on the Ricci curvature of the submanifold we obtain that its first Betti's number is bounded from above by a multiple of the Morse index, which provide evidence for a well-known conjecture of Schoen and Marques & Neves in the setting of higher codimension.
Narasihman and Ramanan proved in [Amer. J. Math. 83(1961), 563–572] that an arbitrary connection in a vector bundle over a base space B can be obtained as the pull-back (via a correctly chosen classifying map from B into the appropriate Grassmannian) of the universal connection in the universal bundle over the Grassmannian. The purpose of this paper is to relate geometric properties of the classifying map to geometric properties of the pulled-back connection. More specifically, we describe conditions on the classifying map under which the pulled-back connection: (1) is fat (in the sphere bundle), (2) has a parallel curvature tensor, and (3) induces a connection metric with nonnegative sectional curvature on the vector bundle (or positive sectional curvature on the sphere bundle).
This paper develops new techniques for studying smooth dynamical systems in the presence of a Carnot–Carathéodory metric. Principally, we employ the theory of Margulis and Mostow, Métivier, Mitchell, and Pansu on tangent cones to establish resonances between Lyapunov exponents. We apply these results in three different settings. First, we explore rigidity properties of smooth dominated splittings for Anosov diffeomorphisms and flows via associated smooth Carnot–Carathéodory metrics. Second, we obtain local rigidity properties of higher hyperbolic rank metrics in a neighborhood of a locally symmetric one. For the latter application we also prove structural stability of the Brin–Pesin asymptotic holonomy group for frame flows. Finally, we obtain local rigidity properties for uniform lattice actions on the ideal boundary of quaternionic and octonionic symmetric spaces.
We study families of metrics on automorphic vector bundles associated with representations of the modular group. These metrics are defined using an Eisenstein series construction. We show that in certain cases, the residue of these Eisenstein metrics at their rightmost pole is a harmonic metric for the underlying representation of the modular group. The last section of the paper considers the case of a family of representations that are indecomposable but not irreducible. The analysis of the corresponding Eisenstein metrics, and the location of their rightmost pole, is an open question whose resolution depends on the asymptotics of matrix-valued Kloosterman sums.
Consider a homogeneous Poisson point process of the Euclidean plane and its Voronoi tessellation. The present note discusses the properties of two stationary point processes associated with the latter and depending on a parameter $\theta$. The first is the set of points that belong to some one-dimensional facet of the Voronoi tessellation and such that the angle with which they see the two nuclei defining the facet is $\theta$. The main question of interest on this first point process is its intensity. The second point process is that of the intersections of the said tessellation with a straight line having a random orientation. Its intensity is well known. The intersection points almost surely belong to one-dimensional facets. The main question here concerns the Palm distribution of the angle with which the points of this second point process see the two nuclei associated with the facet. We will give answers to these two questions and briefly discuss their practical motivations. We also discuss natural extensions to three dimensions.