To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain large and moderate deviation estimates for both sequential and random compositions of intermittent maps. We also address the question of whether or not centering is necessary for the quenched central limit theorems obtained by Nicol, Török and Vaienti [Central limit theorems for sequential and random intermittent dynamical systems. Ergod. Th. & Dynam. Sys.38(3) (2018), 1127–1153] for random dynamical systems comprising intermittent maps. Using recent work of Abdelkader and Aimino [On the quenched central limit theorem for random dynamical systems. J. Phys. A 49(24) (2016), 244002] and Hella and Stenlund [Quenched normal approximation for random sequences of transformations. J. Stat. Phys.178(1) (2020), 1–37] we extend the results of Nicol, Török and Vaienti on quenched central limit theorems for centered observables over random compositions of intermittent maps: first by enlarging the parameter range over which the quenched central limit theorem holds; and second by showing that the variance in the quenched central limit theorem is almost surely constant (and the same as the variance of the annealed central limit theorem) and that centering is needed to obtain this quenched central limit theorem.
We obtain estimates on the uniform convergence rate of the Birkhoff average of a continuous observable over torus translations and affine skew product toral transformations. The convergence rate depends explicitly on the modulus of continuity of the observable and on the arithmetic properties of the frequency defining the transformation. Furthermore, we show that for the one-dimensional torus translation, these estimates are nearly optimal.
A measure on a locally compact group is said to be spread out if one of its convolution powers is not singular with respect to Haar measure. Using Markov chain theory, we conduct a detailed analysis of random walks on homogeneous spaces with spread out increment distribution. For finite volume spaces, we arrive at a complete picture of the asymptotics of the n-step distributions: they equidistribute towards Haar measure, often exponentially fast and locally uniformly in the starting position. In addition, many classical limit theorems are shown to hold. In the infinite volume case, we prove recurrence and a ratio limit theorem for symmetric spread out random walks on homogeneous spaces of at most quadratic growth. This settles one direction in a long-standing conjecture.
We show that for good measures, the set of homeomorphisms of Cantor space which preserve that measure and which have no invariant clopen sets contains a residual set of homeomorphisms which are uniquely ergodic. Additionally, we show that for refinable Bernoulli trial measures, the same set of homeomorphisms contains a residual set of homeomorphisms which admit only finitely many ergodic measures.
This article investigates the long-time behavior of conservative affine processes on the cone of symmetric positive semidefinite $d\times d$ matrices. In particular, for conservative and subcritical affine processes we show that a finite $\log$-moment of the state-independent jump measure is sufficient for the existence of a unique limit distribution. Moreover, we study the convergence rate of the underlying transition kernel to the limit distribution: first, in a specific metric induced by the Laplace transform, and second, in the Wasserstein distance under a first moment assumption imposed on the state-independent jump measure and an additional condition on the diffusion parameter.
A twisted cocycle taking values on a Lie group G is a cocycle that is twisted by an automorphism of G in each step. In the case where G = GL(d, ℝ), we prove that if two Hölder continuous twisted cocycles satisfying the so-called fiber-bunching condition have the same periodic data then they are cohomologous.
Furstenberg [Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory1 (1967), 1–49] calculated the Hausdorff and Minkowski dimensions of one-sided subshifts in terms of topological entropy. We generalize this to $\mathbb{Z}^{2}$-subshifts. Our generalization involves mean dimension theory. We calculate the metric mean dimension and the mean Hausdorff dimension of $\mathbb{Z}^{2}$-subshifts with respect to a subaction of $\mathbb{Z}$. The resulting formula is quite analogous to Furstenberg’s theorem. We also calculate the rate distortion dimension of $\mathbb{Z}^{2}$-subshifts in terms of Kolmogorov–Sinai entropy.
Let $\unicode[STIX]{x1D6F4}$ be a compact orientable surface of genus $g=1$ with $n=1$ boundary component. The mapping class group $\unicode[STIX]{x1D6E4}$ of $\unicode[STIX]{x1D6F4}$ acts on the $\mathsf{SU}(3)$-character variety of $\unicode[STIX]{x1D6F4}$. We show that the action is ergodic with respect to the natural symplectic measure on the character variety.
We study Smale skew product endomorphisms (introduced in Mihailescu and Urbański [Skew product Smale endomorphisms over countable shifts of finite type. Ergod. Th. & Dynam. Sys. doi: 10.1017/etds.2019.31. Published online June 2019]) now over countable graph-directed Markov systems, and we prove the exact dimensionality of conditional measures in fibers, and then the global exact dimensionality of the equilibrium measure itself. Our results apply to large classes of systems and have many applications. They apply, for instance, to natural extensions of graph-directed Markov systems. Another application is to skew products over parabolic systems. We also give applications in ergodic number theory, for example to the continued fraction expansion, and the backward fraction expansion. In the end we obtain a general formula for the Hausdorff (and pointwise) dimension of equilibrium measures with respect to the induced maps of natural extensions ${\mathcal{T}}_{\unicode[STIX]{x1D6FD}}$ of $\unicode[STIX]{x1D6FD}$-maps $T_{\unicode[STIX]{x1D6FD}}$, for arbitrary $\unicode[STIX]{x1D6FD}>1$.
We prove effective equidistribution of primitive rational points and of primitive rational points defined by monomials along long horocycle orbits in products of the torus and the modular surface. This answers a question posed in joint work by the first and the last named author with Shahar Mozes and Uri Shapira. Under certain congruence conditions we prove the joint equidistribution of conjugate rational points in the 2-torus and the modular surface.
In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups. Invent. Math.170(2) (2007), 243–295]. Let $G$ be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let $H$ be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of $G$ with value in $H$ is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math.58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann.344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc.362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of $g$-genus surfaces with $p$-punches, $g\geq 2,p\geq 0$; Richard Thompson groups $F,T,V$; $\text{Aut}(F_{n})$, $\text{Out}(F_{n})$, $n\geq 3$; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann.368(3–4) (2017), 1109–1132].
We consider the dynamics of complex rational maps on $\widehat{\mathbb{C}}$. We prove that, after reducing their orbits to a fixed number of positive values representing the Fubini–Study distances between finitely many initial elements of the orbit and the origin, ergodic properties of the rational map are preserved.
We introduce inner amenability for discrete probability-measure-preserving (p.m.p.) groupoids and investigate its basic properties, examples, and the connection with central sequences in the full group of the groupoid or central sequences in the von Neumann algebra associated with the groupoid. Among other things, we show that every free ergodic p.m.p. compact action of an inner amenable group gives rise to an inner amenable orbit equivalence relation. We also obtain an analogous result for compact extensions of equivalence relations that either are stable or have a nontrivial central sequence in their full group.
We study the independence density for finite families of finite tuples of sets for continuous actions of discrete groups on compact metrizable spaces. We use it to show that actions with positive naive entropy are Li–Yorke chaotic and untame. In particular, distal actions have zero naive entropy. This answers a question of Lewis Bowen.
We consider dynamical systems $T:X\rightarrow X$ that are extensions of a factor $S:Y\rightarrow Y$ through a projection $\unicode[STIX]{x1D70B}:X\rightarrow Y$ with shrinking fibers, that is, such that $T$ is uniformly continuous along fibers $\unicode[STIX]{x1D70B}^{-1}(y)$ and the diameter of iterate images of fibers $T^{n}(\unicode[STIX]{x1D70B}^{-1}(y))$ uniformly go to zero as $n\rightarrow \infty$. We prove that every $S$-invariant measure $\check{\unicode[STIX]{x1D707}}$ has a unique $T$-invariant lift $\unicode[STIX]{x1D707}$, and prove that many properties of $\check{\unicode[STIX]{x1D707}}$ lift to $\unicode[STIX]{x1D707}$: ergodicity, weak and strong mixing, decay of correlations and statistical properties (possibly with weakening in the rates). The basic tool is a variation of the Wasserstein distance, obtained by constraining the optimal transportation paradigm to displacements along the fibers. We extend classical arguments to a general setting, enabling us to translate potentials and observables back and forth between $X$ and $Y$.
Let $\unicode[STIX]{x1D703}$ be an irrational real number. The map $T_{\unicode[STIX]{x1D703}}:y\mapsto (y+\unicode[STIX]{x1D703})\!\hspace{0.6em}{\rm mod}\hspace{0.2em}1$ from the unit interval $\mathbf{I}= [\!0,1\![$ (endowed with the Lebesgue measure) to itself is ergodic. In a short paper [Parry, Automorphisms of the Bernoulli endomorphism and a class of skew-products. Ergod. Th. & Dynam. Sys.16 (1996), 519–529] published in 1996, Parry provided an explicit isomorphism between the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift when $\unicode[STIX]{x1D703}$ is extremely well approximated by the rational numbers, namely, if
A few years later, Hoffman and Rudolph [Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. of Math. (2)156 (2002), 79–101] showed that for every irrational number, the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ is isomorphic to the unilateral dyadic Bernoulli shift. Their proof is not constructive. In the present paper, we relax notably Parry’s condition on $\unicode[STIX]{x1D703}$: the explicit map provided by Parry’s method is an isomorphism between the map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift whenever
where $[0;a_{1},a_{2},\ldots ]$ is the continued fraction expansion and $(p_{n}/q_{n})_{n\geq 0}$ the sequence of convergents of $\Vert \unicode[STIX]{x1D703}\Vert :=\text{dist}(\unicode[STIX]{x1D703},\mathbb{Z})$. Whether Parry’s map is an isomorphism for every $\unicode[STIX]{x1D703}$ or not is still an open question, although we expect a positive answer.
Von Neumann’s original proof of the ergodic theorem is revisited. A uniform convergence rate is established under the assumption that one can control the density of the spectrum of the underlying self-adjoint operator when restricted to suitable subspaces. Explicit rates are obtained when the bound is polynomial, with applications to the linear Schrödinger and wave equations. In particular, decay estimates for time averages of solutions are shown.
An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and $n$-divisibility of actions. We consider the general question of when there are realizations of abstract systems of congruences satisfying various measurability constraints. We completely characterize which abstract systems of congruences can be realized by nonmeager Baire measurable pieces of the sphere under the action of rotations on the $2$-sphere. This answers a question by Wagon. We also construct Borel realizations of abstract systems of congruences for the action of $\mathsf{PSL}_{2}(\mathbb{Z})$ on $\mathsf{P}^{1}(\mathbb{R})$. The combinatorial underpinnings of our proof are certain types of decomposition of Borel graphs into paths. We also use these decompositions to obtain some results about measurable unfriendly colorings.
In this paper we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a normal transition kernel, such as that of birth–death chains or reversible Markov chains. We start by identifying a set of sufficient conditions for a Markov chain to belong to the similarity orbit of a birth–death chain. As by-products, we obtain a spectral representation in terms of non-self-adjoint resolutions of identity in the sense of Dunford [21] and offer a detailed analysis on the convergence rate, separation cutoff and L2-cutoff of this class of non-reversible Markov chains. We also look into the problem of estimating the integral functionals from discrete observations for this class. In the last part of this paper we investigate a particular similarity orbit of reversible Markov kernels, which we call the pure birth orbit, and analyse various possibly non-reversible variants of classical birth–death processes in this orbit.
The Chirikov standard map is a prototypical example of a one-parameter family of volume-preserving maps for which one anticipates chaotic behavior on a non-negligible (positive-volume) subset of phase space for a large set of parameters. Rigorous analysis is notoriously difficult and it remains an open question whether this chaotic region, the stochastic sea, has positive Lebesgue measure for any parameter value. Here we study a problem of intermediate difficulty: compositions of standard maps with increasing coefficient. When the coefficients increase to infinity at a sufficiently fast polynomial rate, we obtain a strong law, a central limit theorem, and quantitative mixing estimates for Holder observables. The methods used are not specific to the standard map and apply to a class of compositions of ‘prototypical’ two-dimensional maps with hyperbolicity on ‘most’ of phase space.