To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to establish exponential mixing of frame flows for convex cocompact hyperbolic manifolds of arbitrary dimension with respect to the Bowen–Margulis–Sullivan measure. Some immediate applications include an asymptotic formula for matrix coefficients with an exponential error term as well as the exponential equidistribution of holonomy of closed geodesics. The main technical result is a spectral bound on transfer operators twisted by holonomy, which we obtain by building on Dolgopyat's method.
We study the ergodic properties of horospheres on rank 1 manifolds with non-positive curvature. We prove that the horospheres are equidistributed under the action of the geodesic flow towards the Bowen–Margulis measure, on a large class of manifolds. In the case of surfaces, we define a parametrization of the horocyclic flow on the set of horocycles containing a rank 1 vector that is recurrent under the action of the geodesic flow. We prove that the horocyclic flow in restriction to this set is uniquely ergodic. The results are valid for large classes of manifolds, including the compact ones.
Let $\mathcal {P}$ be an (unbounded) countable multiset of primes (that is, every prime may appear multiple times) and let $G=\bigoplus _{p\in \mathcal {P}}\mathbb {F}_p$. We develop a Host–Kra structure theory for the universal characteristic factors of an ergodic G-system. More specifically, we generalize the main results of Bergelson, Tao and Ziegler [An inverse theorem for the uniformity seminorms associated with the action of $\mathbb {F}_p^\infty $. Geom. Funct. Anal.19(6) (2010), 1539–1596], who studied these factors in the special case $\mathcal {P}=\{p,p,p,\ldots \}$ for some fixed prime p. As an application we deduce a Khintchine-type recurrence theorem in the flavor of Bergelson, Tao and Ziegler [Multiple recurrence and convergence results associated to $F_p^\omega $-actions. J. Anal. Math.127 (2015), 329–378] and Bergelson, Host and Kra [Multiple recurrence and nilsequences. Invent. Math.160(2) (2005), 261–303, with an appendix by I. Ruzsa].
In this paper we prove bounds for ergodic averages for nilflows on general higher-step nilmanifolds. Under Diophantine condition on the frequency of a toral projection of the flow, we prove that almost all orbits become equidistributed at polynomial speed. We analyze the rate of decay which is determined by the number of steps and structure of general nilpotent Lie algebras. Our main result follows from the technique of controlling scaling operators in irreducible representations and measure estimation on close return orbits on general nilmanifolds.
We prove by methods of harmonic analysis a result on the existence of solutions for twisted cohomological equations on translation surfaces with loss of derivatives at most $3+$ in Sobolev spaces. As a consequence we prove that product translation flows on (three-dimensional) translation manifolds which are products of a (higher-genus) translation surface with a (flat) circle are stable in the sense of A. Katok. In turn, our result on product flows implies a stability result of time-$\tau $ maps of translation flows on translation surfaces.
The ergodic properties of two uncoupled oscillators, one horizontal and one vertical, residing in a class of non-rectangular star-shaped polygons with only vertical and horizontal boundaries and impacting elastically from its boundaries are studied. We prove that the iso-energy level sets topology changes non-trivially; the flow on level sets is always conjugated to a translation flow on a translation surface, yet, for some segments of partial energies the genus of the surface is strictly greater than $1$. When at least one of the oscillators is unharmonic, or when both are harmonic and non-resonant, we prove that for almost all partial energies, including the impacting ones, the flow on level sets is uniquely ergodic. When both oscillators are harmonic and resonant, we prove that there exist intervals of partial energies on which periodic ribbons and additional ergodic components coexist. We prove that for almost all partial energies in such segments the motion is uniquely ergodic on the part of the level set that is not occupied by the periodic ribbons. This implies that ergodic averages project to piecewise smooth weighted averages in the configuration space.
Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system $(X,G)$, where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure $\mu $ coincides with the metric entropy if either $\mu $ is ergodic or the system satisfies a kind of specification property.
We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $-algebras associated to these groupoids. We provide a new characterization of $ 1 $-cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $-tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators ($ k $-Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{\ast } $-algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.
Foreman and Weiss [Measure preserving diffeomorphisms of the torus are unclassifiable. Preprint, 2020, arXiv:1705.04414] obtained an anti-classification result for smooth ergodic diffeomorphisms, up to measure isomorphism, by using a functor $\mathcal {F}$ (see [Foreman and Weiss, From odometers to circular systems: a global structure theorem. J. Mod. Dyn.15 (2019), 345–423]) mapping odometer-based systems, $\mathcal {OB}$, to circular systems, $\mathcal {CB}$. This functor transfers the classification problem from $\mathcal {OB}$ to $\mathcal {CB}$, and it preserves weakly mixing extensions, compact extensions, factor maps, the rank-one property, and certain types of isomorphisms. Thus it is natural to ask whether $\mathcal {F}$ preserves other dynamical properties. We show that $\mathcal {F}$ does not preserve the loosely Bernoulli property by providing positive and zero-entropy examples of loosely Bernoulli odometer-based systems whose corresponding circular systems are not loosely Bernoulli. We also construct a loosely Bernoulli circular system whose corresponding odometer-based system has zero entropy and is not loosely Bernoulli.
Assuming positive entropy, we prove a measure rigidity theorem for higher rank actions on tori and solenoids by commuting automorphisms. We also apply this result to obtain a complete classification of disjointness and measurable factors for these actions.
It is well known that stationary geometrically ergodic Markov chains are $\beta$-mixing (absolutely regular) with geometrically decaying mixing coefficients. Furthermore, for initial distributions other than the stationary one, geometric ergodicity implies $\beta$-mixing under suitable moment assumptions. In this note we show that similar results hold also for subgeometrically ergodic Markov chains. In particular, for both stationary and other initial distributions, subgeometric ergodicity implies $\beta$-mixing with subgeometrically decaying mixing coefficients. Although this result is simple, it should prove very useful in obtaining rates of mixing in situations where geometric ergodicity cannot be established. To illustrate our results we derive new subgeometric ergodicity and $\beta$-mixing results for the self-exciting threshold autoregressive model.
We give many examples of algebraic actions which are factors of Bernoulli shifts. These include certain harmonic models over left-orderable groups of large enough growth, as well as algebraic actions associated to certain lopsided elements in any left-orderable group. For many of our examples, the acting group is amenable so these actions are Bernoulli (and not just a factor of a Bernoulli), but there is no obvious Bernoulli partition.
We show that self-similar measures on $\mathbb R^d$ satisfying the weak separation condition are uniformly scaling. Our approach combines elementary ergodic theory with geometric analysis of the structure given by the weak separation condition.
We compute the gap distribution of directions of saddle connections for two classes of translation surfaces. One class will be the translation surfaces arising from gluing two identical tori along a slit. These yield the first explicit computations of gap distributions for non-lattice translation surfaces. We show that this distribution has support at zero and quadratic tail decay. We also construct examples of translation surfaces in any genus $d>1$ that have the same gap distribution as the gap distribution of two identical tori glued along a slit. The second class we consider are twice-marked tori and saddle connections between distinct marked points with a specific orientation. These results can be interpreted as the gap distribution of slopes of affine lattices. We obtain our results by translating the question of gap distributions to a dynamical question of return times to a transversal under the horocycle flow on an appropriate moduli space.
We consider backward filtrations generated by processes coming from deterministic and probabilistic cellular automata. We prove that these filtrations are standard in the classical sense of Vershik’s theory, but we also study them from another point of view that takes into account the measure-preserving action of the shift map, for which each sigma-algebra in the filtrations is invariant. This initiates what we call the dynamical classification of factor filtrations, and the examples we study show that this classification leads to different results.
In this paper we prove a local exponential synchronization for Markovian random iterations of homeomorphisms of the circle $S^{1}$, providing a new result on stochastic circle dynamics even for $C^1$-diffeomorphisms. This result is obtained by combining an invariance principle for stationary random iterations of homeomorphisms of the circle with a Krylov–Bogolyubov-type result for homogeneous Markov chains.
Mixing rates, relaxation rates, and decay of correlations for dynamics defined by potentials with summable variations are well understood, but little is known for non-summable variations. This paper exhibits upper bounds for these quantities for dynamics defined by potentials with square-summable variations. We obtain these bounds as corollaries of a new block coupling inequality between pairs of dynamics starting with different histories. As applications of our results, we prove a new weak invariance principle and a Hoeffding-type inequality.
In this article we study physical measures for $\operatorname {C}^{1+\alpha }$ partially hyperbolic diffeomorphisms with a mostly expanding center. We show that every diffeomorphism with a mostly expanding center direction exhibits a geometrical-combinatorial structure, which we call skeleton, that determines the number, basins and supports of the physical measures. Furthermore, the skeleton allows us to describe how physical measures bifurcate as the diffeomorphism changes under $C^1$ topology.
Moreover, for each diffeomorphism with a mostly expanding center, there exists a $C^1$ neighbourhood, such that diffeomorphism among a $C^1$ residual subset of this neighbourhood admits finitely many physical measures, whose basins have full volume.
We also show that the physical measures for diffeomorphisms with a mostly expanding center satisfy exponential decay of correlation for any Hölder observes. In particular, we prove that every $C^2$, partially hyperbolic, accessible diffeomorphism with 1-dimensional center and nonvanishing center exponent has exponential decay of correlations for Hölder functions.
Given any smooth Anosov map, we construct a Banach space on which the associated transfer operator is quasi-compact. The peculiarity of such a space is that, in the case of expanding maps, it reduces exactly to the usual space of functions of bounded variation which has proved to be particularly successful in studying the statistical properties of piecewise expanding maps. Our approach is based on a new method of studying the absolute continuity of foliations, which provides new information that could prove useful in treating hyperbolic systems with singularities.
A zero-entropy system is said to be loosely Bernoulli if it can be induced from an irrational rotation of the circle. We provide a criterion for zero-entropy systems to be loosely Bernoulli that is compatible with mixing. Using this criterion, we show the existence of smooth mixing zero-entropy loosely Bernoulli transformations whose Cartesian square is loosely Bernoulli.