We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A tame dynamical system can be characterized by the cardinality of its enveloping (or Ellis) semigroup. Indeed, this cardinality is that of the power set of the continuum $2^{\mathfrak c}$ if the system is non-tame. The semigroup admits a minimal bilateral ideal and this ideal is a union of isomorphic copies of a group $\mathcal H$, called the structure group. For almost automorphic systems, the cardinality of $\mathcal H$ is at most ${\mathfrak c}$ that of the continuum. We show a partial converse of this which holds for minimal systems for which the Ellis semigroup of their maximal equicontinuous factor acts freely, namely that the cardinality of $\mathcal H$ is $2^{{\mathfrak c}}$ if the proximal relation is not transitive and the subgroup generated by products $\xi \zeta ^{-1}$ of singular points $\xi ,\zeta $ in the maximal equicontinuous factor is not open. This refines the above statement about non-tame Ellis semigroups, as it locates a particular algebraic component of the latter which has such a large cardinality.
In this article, we revisit the notion of some hyperbolicity introduced by Pujals and Sambarino [A sufficient condition for robustly minimal foliations. Ergod. Th. & Dynam. Sys.26(1) (2006), 281–289]. We present a more general definition that, in particular, can be applied to the symplectic context (something that was not possible for the previous one). As an application, we construct $C^1$ robustly transitive derived from Anosov diffeomorphisms with mixed behaviour on centre leaves.
R. Pavlov and S. Schmieding [On the structure of generic subshifts. Nonlinearity36 (2023), 4904–4953] recently provided some results about generic $\mathbb {Z}$-shifts, which rely mainly on an original theorem stating that isolated points form a residual set in the space of $\mathbb {Z}$-shifts such that all other residual sets must contain it. As a direction for further research, they pointed towards genericity in the space of $\mathbb {G}$-shifts, where $\mathbb {G}$ is a finitely generated group. In the present text, we approach this for the case of $\mathbb {Z}^d$-shifts, where $d \ge 2$. As it is usual, multidimensional dynamical systems are much more difficult to understand. In light of the result of R. Pavlov and S. Schmieding, it is natural to begin with a better understanding of isolated points. We prove here a characterization of such points in the space of $\mathbb {Z}^d$-shifts, in terms of the natural notion of maximal subsystems that we also introduce in this article. From this characterization, we recover the result of R. Pavlov and S. Schmieding for $\mathbb {Z}^1$-shifts. We also prove a series of results that exploit this notion. In particular, some transitivity-like properties can be related to the number of maximal subsystems. Furthermore, we show that the Cantor–Bendixon rank of the space of $\mathbb {Z}^d$-shifts is infinite for $d>1$, while for $d=1$, it is known to be equal to one.
We introduce and study the notion of hereditary frequent hypercyclicity, which is a reinforcement of the well-known concept of frequent hypercyclicity. This notion is useful for the study of the dynamical properties of direct sums of operators; in particular, a basic observation is that the direct sum of a hereditarily frequently hypercyclic operator with any frequently hypercyclic operator is frequently hypercyclic. Among other results, we show that operators satisfying the frequent hypercyclicity criterion are hereditarily frequently hypercyclic, as well as a large class of operators whose unimodular eigenvectors are spanning with respect to the Lebesgue measure. However, we exhibit two frequently hypercyclic weighted shifts $B_w,B_{w'}$ on $c_0(\mathbb {Z}_+)$ whose direct sum ${B_w\oplus B_{w'}}$ is not $\mathcal {U}$-frequently hypercyclic (so that neither of them is hereditarily frequently hypercyclic), and we construct a C-type operator on $\ell _p(\mathbb {Z}_+)$, $1\le p<\infty $, which is frequently hypercyclic but not hereditarily frequently hypercyclic. We also solve several problems concerning disjoint frequent hypercyclicity: we show that for every $N\in \mathbb {N}$, any disjoint frequently hypercyclic N-tuple of operators $(T_1,\ldots ,T_N)$ can be extended to a disjoint frequently hypercyclic $(N+1)$-tuple $(T_1,\ldots ,T_N, T_{N+1})$ as soon as the underlying space supports a hereditarily frequently hypercyclic operator; we construct a disjoint frequently hypercyclic pair which is not densely disjoint hypercyclic; and we show that the pair $(D,\tau _a)$ is disjoint frequently hypercyclic, where D is the derivation operator acting on the space of entire functions and $\tau _a$ is the operator of translation by $a\in \mathbb {C}\setminus \{ 0\}$. Part of our results are in fact obtained in the general setting of Furstenberg families.
We study the descriptive complexity of sets of points defined by restricting the statistical behaviour of their orbits in dynamical systems on Polish spaces. Particular examples of such sets are the sets of generic points of invariant Borel probability measures, but we also consider much more general sets (for example, $\alpha $-Birkhoff regular sets and the irregular set appearing in the multifractal analysis of ergodic averages of a continuous real-valued function). We show that many of these sets are Borel in general, and all these are Borel when we assume that our space is compact. We provide examples of these sets being non-Borel, properly placed at the first level of the projective hierarchy (they are complete analytic or co-analytic). This proves that the compactness assumption is, in some cases, necessary to obtain Borelness. When these sets are Borel, we measure their descriptive complexity using the Borel hierarchy. We show that the sets of interest are located at most at the third level of the hierarchy. We also use a modified version of the specification property to show that these sets are properly located at the third level of the hierarchy for many dynamical systems. To demonstrate that the specification property is a sufficient, but not necessary, condition for maximal descriptive complexity of a set of generic points, we provide an example of a compact minimal system with an invariant measure whose set of generic points is $\boldsymbol {\Pi }^0_3$-complete.
We study the computational problem of rigorously describing the asymptotic behavior of topological dynamical systems up to a finite but arbitrarily small pre-specified error. More precisely, we consider the limit set of a typical orbit, both as a spatial object (attractor set) and as a statistical distribution (physical measure), and we prove upper bounds on the computational resources of computing descriptions of these objects with arbitrary accuracy. We also study how these bounds are affected by different dynamical constraints and provide several examples showing that our bounds are sharp in general. In particular, we exhibit a computable interval map having a unique transitive attractor with Cantor set structure supporting a unique physical measure such that both the attractor and the measure are non-computable.
Many continua that admit a transitive homeomorphism may be found in the literature. The circle is probably the simplest non-degenerate continuum that admits such a homeomorphism. However, most of the known examples of such continua have a complicated topological structure. For example, they are indecomposable (such as the pseudo-arc or the Knaster bucket-handle continuum), or they are not indecomposable but have some other complicated topological structure, such as a dense set of ramification points (such as the Sierpiński carpet) or a dense set of end-points (such as the Lelek fan). In this paper, we continue our mission of finding continua with simpler topological structures that admit a transitive homeomorphism. We construct a transitive homeomorphism on the Cantor fan. In our approach, we use two different techniques, each of them giving two constructions of a transitive homeomorphism on the Cantor fan: one technique using quotient spaces of products of compact metric spaces and Cantor sets, and one using Mahavier products of closed relations on compact metric spaces. We also demonstrate how our technique using Mahavier products of closed relations may be used to construct a transitive function f on a Cantor fan X such that $\varprojlim (X,f)$ is a Lelek fan.
We develop combinatorial tools to study partial rigidity within the class of minimal $\mathcal {S}$-adic subshifts. By leveraging the combinatorial data of well-chosen Kakutani–Rokhlin partitions, we establish a necessary and sufficient condition for partial rigidity. Additionally, we provide an explicit expression to compute the partial rigidity rate and an associated partial rigidity sequence. As applications, we compute the partial rigidity rate for a variety of constant length substitution subshifts, such as the Thue–Morse subshift, where we determine a partial rigidity rate of 2/3. We also exhibit non-rigid substitution subshifts with partial rigidity rates arbitrarily close to 1 and, as a consequence, using products of the aforementioned substitutions, we obtain that any number in $[0, 1]$ is the partial rigidity rate of a system.
We establish sufficient and necessary conditions for the joint transitivity of linear iterates in a minimal topological dynamical system with commuting transformations. This result provides the first topological analogue of the classical Berend and Bergelson joint ergodicity criterion in measure-preserving systems.
Let $(W,S)$ be a Coxeter system, and write $S=\{s_i:i\in I\}$, where I is a finite index set. Fix a nonempty convex subset $\mathscr {L}$ of W. If W is of type A, then $\mathscr {L}$ is the set of linear extensions of a poset, and there are important Bender–Knuth involutions$\mathrm {BK}_i\colon \mathscr {L}\to \mathscr {L}$ indexed by elements of I. For arbitrary W and for each $i\in I$, we introduce an operator $\tau _i\colon W\to W$ (depending on $\mathscr {L}$) that we call a noninvertible Bender–Knuth toggle; this operator restricts to an involution on $\mathscr {L}$ that coincides with $\mathrm {BK}_i$ in type A. Given a Coxeter element $c=s_{i_n}\cdots s_{i_1}$, we consider the operator $\mathrm {Pro}_c=\tau _{i_n}\cdots \tau _{i_1}$. We say W is futuristic if for every nonempty finite convex set $\mathscr {L}$, every Coxeter element c and every $u\in W$, there exists an integer $K\geq 0$ such that $\mathrm {Pro}_c^K(u)\in \mathscr {L}$. We prove that finite Coxeter groups, right-angled Coxeter groups, rank-3 Coxeter groups, affine Coxeter groups of types $\widetilde A$ and $\widetilde C$, and Coxeter groups whose Coxeter graphs are complete are all futuristic. When W is finite, we actually prove that if $s_{i_N}\cdots s_{i_1}$ is a reduced expression for the long element of W, then $\tau _{i_N}\cdots \tau _{i_1}(W)=\mathscr {L}$; this allows us to determine the smallest integer $\mathrm {M}(c)$ such that $\mathrm {Pro}_c^{{\mathrm {M}}(c)}(W)=\mathscr {L}$ for all $\mathscr {L}$. We also exhibit infinitely many non-futuristic Coxeter groups, including all irreducible affine Coxeter groups that are not of type $\widetilde A$, $\widetilde C$, or $\widetilde G_2$.
We study scaled topological entropy, scaled measure entropy, and scaled local entropy in the context of amenable group actions. In particular, a variational principle is established.
Sets on the boundary of a complementary component of a continuum in the plane have been of interest since the early 1920s. Curry and Mayer defined the buried points of a plane continuum to be the points in the continuum which were not on the boundary of any complementary component. Motivated by their investigations of Julia sets, they asked what happens if the set of buried points of a plane continuum is totally disconnected and nonempty. Curry, Mayer, and Tymchatyn showed that in that case the continuum is Suslinian, i.e., it does not contain an uncountable collection of nondegenerate pairwise disjoint subcontinua. In an answer to a question of Curry et al., van Mill and Tuncali constructed a plane continuum whose buried point set was totally disconnected, nonempty, and one-dimensional at each point of a countably infinite set. In this paper, we show that the van Mill–Tuncali example was the best possible in the sense that whenever the buried set is totally disconnected, it is one-dimensional at each of at most countably many points. As a corollary, we find that the buried set cannot be almost zero-dimensional unless it is zero-dimensional. We also construct locally connected van Mill–Tuncali type examples.
We prove a result on equilibrium measures for potentials with summable variation on arbitrary subshifts over a countable amenable group. For finite configurations v and w, if v is always replaceable by w, we obtain a bound on the measure of v depending on the measure of w and a cocycle induced by the potential. We then use this result to show that under this replaceability condition, we can obtain bounds on the Lebesgue–Radon–Nikodym derivative $d (\mu _\phi \circ \xi ) / d\mu _\phi $ for certain holonomies $\xi $ that generate the homoclinic (Gibbs) relation. As corollaries, we obtain extensions of results by Meyerovitch [Gibbs and equilibrium measures for some families of subshifts. Ergod. Th. & Dynam. Sys. 33(3) (2013), 934–953], and García-Ramos and Pavlov [Extender sets and measures of maximal entropy for subshifts. J. Lond. Math. Soc. (2)100(3) (2019), 1013–1033] to the countable amenable group subshift setting. Our methods rely on the exact tiling result for countable amenable groups by Downarowicz, Huczek, and Zhang [Tilings of amenable groups. J. Reine Angew. Math. 2019(747) (2019), 277–298] and an adapted proof technique from García-Ramos and Pavlov.
Krieger’s embedding theorem provides necessary and sufficient conditions for an arbitrary subshift to embed in a given topologically mixing $\mathbb {Z}$-subshift of finite type. For certain families of $\mathbb {Z}^d$-subshifts of finite type, Lightwood characterized the aperiodic subsystems. In the current paper, we prove a new embedding theorem for a class of subshifts of finite type over any countable abelian group. Our theorem provides necessary and sufficient conditions for an arbitrary subshift X to embed inside a given subshift of finite type Y that satisfies a certain natural condition. For the particular case of $\mathbb {Z}$-subshifts, our new theorem coincides with Krieger’s theorem. Our result gives the first complete characterization of the subsystems of the multidimensional full shift $Y= \{0,1\}^{\mathbb {Z}^d}$. The natural condition on the target subshift Y, introduced explicitly for the first time in the current paper, is called the map extension property. It was introduced implicitly by Mike Boyle in the early 1980s for $\mathbb {Z}$-subshifts and is closely related to the notion of an absolute retract, introduced by Borsuk in the 1930s. A $\mathbb {Z}$-subshift has the map extension property if and only if it is a topologically mixing subshift of finite type. We show that various natural examples of $\mathbb {Z}^d$ subshifts of finite type satisfy the map extension property, and hence our embedding theorem applies for them. These include any subshift of finite type with a safe symbol and the k-colorings of $\mathbb {Z}^d$ with $k \ge 2d+1$. We also establish a new theorem regarding lower entropy factors of multidimensional subshifts that extends Boyle’s lower entropy factor theorem from the one-dimensional case.
Let $(X,\mathcal {B},\mu ,T)$ be a probability-preserving system with X compact and T a homeomorphism. We show that if every point in $X\times X$ is two-sided recurrent, then $h_{\mu }(T)=0$, resolving a problem of Benjamin Weiss, and that if $h_{\mu }(T)=\infty $, then every full-measure set in X contains mean-asymptotic pairs (that is, the associated process is not tight), resolving a problem of Ornstein and Weiss.
We show that linearly repetitive weighted Delone sets in groups of polynomial growth have a uniquely ergodic hull. This result applies in particular to the linearly repetitive weighted Delone sets in homogeneous Lie groups constructed in the companion paper [S. Beckus, T. Hartnick and F. Pogorzelski. Symbolic substitution beyond Abelian groups. Preprint, 2021, arXiv:2109.15210] using symbolic substitution methods. More generally, using the quasi-tiling method of Ornstein and Weiss, we establish unique ergodicity of hulls of weighted Delone sets in amenable unimodular locally compact second countable groups under a new repetitivity condition which we call tempered repetitivity. For this purpose, we establish a general sub-additive convergence theorem, which also has applications concerning the existence of Banach densities and uniform approximation of the spectral distribution function of finite hopping range operators on Cayley graphs.
The present article is concerned with the Lyapunov stability of stationary solutions to the Allen–Cahn equation with a strong irreversibility constraint, which was first intensively studied in [2] and can be reduced to an evolutionary variational inequality of obstacle type. As a feature of the obstacle problem, the set of stationary solutions always includes accumulation points, and hence, it is rather delicate to determine the stability of such non-isolated equilibria. Furthermore, the strongly irreversible Allen–Cahn equation can also be regarded as a (generalized) gradient flow; however, standard techniques for gradient flows such as linearization and Łojasiewicz–Simon gradient inequalities are not available for determining the stability of stationary solutions to the strongly irreversible Allen–Cahn equation due to the non-smooth nature of the obstacle problem.
The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions, with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns out to be more delicate than that in the single color case established in [LLP20]. A large part of our analysis is devoted to studying the associated carrier process, which is a multidimensional Markov chain on the orthant, whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities, Skorokhod decomposition, strong law of large numbers and weak diffusive scaling limit to a semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary descriptions of the soliton lengths and numbers in terms of modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes.
It is known that hyperbolic linear delay difference equations are shadowable on the half-line. In this article, we prove the converse and hence the equivalence between hyperbolicity and the positive shadowing property for the following two classes of linear delay difference equations: (a) for non-autonomous equations with finite delays and uniformly bounded compact coefficient operators in Banach spaces and (b) for Volterra difference equations with infinite delay in finite dimensional spaces.
In this paper, we introduce topologically IGH-stable, IGH-persistent,average IGH-persistent and pointwise weakly topologically IGH-stable homeomorphisms of compact metric spaces. We prove that every topologically IGH-stable homeomorphism is topologically stable and every expansive topologically stable homeomorphism of a compact manifold is topologically IGH-stable. We further prove that every equicontinuous pointwise weakly topologically IGH-stable homeomorphism is IGH-persistent and every pointwise minimally expansive IGH-persistent homeomorphism is pointwise weakly topologically IGH-stable. Finally, we prove that every mean equicontinuous pointwise weakly topologically IGH-stable homeomorphism is average IGH-persistent.