We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a family of infinite nonamenable discrete groups as an interpolation of the Higman–Thompson groups by using the topological full groups of the groupoids defined by $\beta $-expansions of real numbers. They are regarded as full groups of certain interpolated Cuntz algebras, and realized as groups of piecewise-linear functions on the unit interval in the real line if the $\beta $-expansion of $1$ is finite or ultimately periodic. We also classify them by a number-theoretical property of $\beta $.
A probabilistic cellular automaton (PCA) can be viewed as a Markov chain. The cells are updated synchronously and independently, according to a distribution depending on a finite neighborhood. We investigate the ergodicity of this Markov chain. A classical cellular automaton is a particular case of PCA. For a one-dimensional cellular automaton, we prove that ergodicity is equivalent to nilpotency, and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property of the local rule. It is based on a bounding process which is shown to also be a PCA. Last, we focus on the PCA majority, whose asymptotic behavior is unknown, and perform numerical experiments using the perfect sampling procedure.
The class of $\lambda $-synchronizing subshifts generalizes the class of irreducible sofic shifts. A $\lambda $-synchronizing subshift can be presented by a certain $\lambda $-graph system, called the $\lambda $-synchronizing $\lambda $-graph system. The $\lambda $-synchronizing $\lambda $-graph system of a $\lambda $-synchronizing subshift can be regarded as an analogue of the Fischer cover of an irreducible sofic shift. We will study algebraic structure of the ${C}^{\ast } $-algebra associated with a $\lambda $-synchronizing $\lambda $-graph system and prove that the stable isomorphism class of the ${C}^{\ast } $-algebra with its Cartan subalgebra is invariant under flow equivalence of $\lambda $-synchronizing subshifts.
We study recurrence and transience for Lévy processes induced by topological transformation groups acting on complete Riemannian manifolds. In particular the transience–recurrence dichotomy in terms of potential measures is established and transience is shown to be equivalent to the potential measure having finite mass on compact sets when the group acts transitively. It is known that all bi-invariant Lévy processes acting in irreducible Riemannian symmetric pairs of noncompact type are transient. We show that we also have ‘harmonic transience’, that is, local integrability of the inverse of the real part of the characteristic exponent which is associated to the process by means of Gangolli’s Lévy–Khinchine formula.
We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.
There is an unfortunate error in Theorem 4.1 of our paper. However, the statement of the theorem remains true with a correct construction of adding a tail to enlarge the dynamical system.
The automorphisms of the canonical core UHF subalgebra ℱn of the Cuntz algebra 𝒪n do not necessarily extend to automorphisms of 𝒪n. Simple examples are discussed within the family of infinite tensor products of (inner) automorphisms of the matrix algebras Mn. In that case, necessary and sufficient conditions for the extension property are presented. Also addressed is the problem of extending to 𝒪n the automorphisms of the diagonal 𝒟n, which is a regular maximal abelian subalgebra with Cantor spectrum. In particular, it is shown that there exist product-type automorphisms of 𝒟n that do not extend to (possibly proper) endomorphisms of 𝒪n.
We completely determine the localized automorphisms of the Cuntz algebras corresponding to permutation matrices in Mn ⊗ Mn for n = 3 and n = 4. This result is obtained through a combination of general combinatorial techniques and large scale computer calculations. Our analysis proceeds according to the general scheme proposed in a previous paper, where we analysed in detail the case of using labelled rooted trees. We also discuss those proper endomorphisms of these Cuntz algebras which restrict to automorphisms of their respective diagonals. In the case of we compute the number of automorphisms of the diagonal induced by permutation matrices in M3 ⊗ M3 ⊗ M3.
We give a new very concrete description of the C*-envelope of the tensor algebra associated to a multivariable dynamical system. In the surjective case, this C*-envelope is described as a crossed product by an endomorphism and as a groupoid C*-algebra. In the non-surjective case, it is a full corner of such an algebra. We also show that when the space is compact the C*-envelope is simple if and only if the system is minimal.
It is well known that an orientation-preserving homeomorphism of the plane without fixed points has trivial dynamics; that is, its non-wandering set is empty and all the orbits diverge to infinity. However, orbits can diverge to infinity in many different ways (or not) giving rise to fundamental regions of divergence. Such a map is topologically equivalent to a plane translation if and only if it has only one fundamental region. We consider the conservative, orientation-preserving and fixed point free Hénon map and prove that it has only one fundamental region of divergence. Actually, we prove that there exists an area-preserving homeomorphism of the plane that conjugates this Hénon map to a translation.
A λ-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In Doc. Math. 7 (2002) 1–30, the author constructed a C*-algebra O£ associated with a λ-graph system £ from a graph theoretic view-point. If a λ-graph system comes from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that there is a bijective correspondence between the lattice of all saturated hereditary subsets of £ and the lattice of all ideals of the algebra O£, under a certain condition on £ called (II). As a result, the class of the C*-algebras associated with λ-graph systems under condition (II) is closed under quotients by its ideals.