We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$\mathcal {G}$
be a second countable, Hausdorff topological group. If
$\mathcal {G}$
is locally compact, totally disconnected and T is an expansive automorphism then it is shown that the dynamical system
$(\mathcal {G}, T)$
is topologically conjugate to the product of a symbolic full-shift on a finite number of symbols, a totally wandering, countable-state Markov shift and a permutation of a countable coset space of
$\mathcal {G}$
that fixes the defining subgroup. In particular if the automorphism is transitive then
$\mathcal {G}$
is compact and
$(\mathcal {G}, T)$
is topologically conjugate to a full-shift on a finite number of symbols.
The purpose of this article is to study the relation between combinatorial equivalence and topological conjugacy, specifically how a certain type of combinatorial equivalence implies topological conjugacy. We introduce the concept of kneading sequences for a setting that is more general than one-dimensional dynamics: for the two-dimensional toy model family of Hénon maps introduced by Benedicks and Carleson, we define kneading sequences for their critical lines, and prove that these sequences are a complete invariant for a natural conjugacy class among the toy model family. We also establish a version of Singer’s theorem for the toy model family.
We consider a locally path-connected compact metric space K with finite first Betti number
$\textrm {b}_1(K)$
and a flow
$(K, G)$
on K such that G is abelian and all G-invariant functions
$f\,{\in}\, \textrm{C}(K)$
are constant. We prove that every equicontinuous factor of the flow
$(K, G)$
is isomorphic to a flow on a compact abelian Lie group of dimension less than
${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$
. For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map
$p\colon K\to L$
between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice
$\textrm {C}(K)$
.
It is shown that the Ellis semigroup of a
$\mathbb Z$
-action on a compact totally disconnected space is completely regular if and only if forward proximality coincides with forward asymptoticity and backward proximality coincides with backward asymptoticity. Furthermore, the Ellis semigroup of a
$\mathbb Z$
- or
$\mathbb R$
-action for which forward proximality and backward proximality are transitive relations is shown to have at most two left minimal ideals. Finally, the notion of near simplicity of the Ellis semigroup is introduced and related to the above.
This paper is concerned with the asymptotic behaviour of solutions to a class of non-autonomous stochastic nonlinear wave equations with dispersive and viscosity dissipative terms driven by operator-type noise defined on the entire space $\mathbb {R}^n$. The existence, uniqueness, time-semi-uniform compactness and asymptotically autonomous robustness of pullback random attractors are proved in $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$ when the growth rate of the nonlinearity has a subcritical range, the density of the noise is suitably controllable, and the time-dependent force converges to a time-independent function in some sense. The main difficulty to establish the time-semi-uniform pullback asymptotic compactness of the solutions in $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$ is caused by the lack of compact Sobolev embeddings on $\mathbb {R}^n$, as well as the weak dissipativeness of the equations is surmounted at light of the idea of uniform tail-estimates and a spectral decomposition approach. The measurability of random attractors is proved by using an argument which considers two attracting universes developed by Wang and Li (Phys. D 382: 46–57, 2018).
Higher-dimensional binary shifts of number-theoretic origin with positive topological entropy are considered. We are particularly interested in analysing their symmetries and extended symmetries. They form groups, known as the topological centralizer and normalizer of the shift dynamical system, which are natural topological invariants. Here, our focus is on shift spaces with trivial centralizers, but large normalizers. In particular, we discuss several systems where the normalizer is an infinite extension of the centralizer, including the visible lattice points and the k-free integers in some real quadratic number fields.
The papers [O. M. Sarig. Symbolic dynamics for surface diffeomorphisms with positive entropy. J. Amer. Math. Soc.26(2) (2013), 341–426] and [S. Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. J. Mod. Dyn.13 (2018), 43–113] constructed symbolic dynamics for the restriction of
$C^r$
diffeomorphisms to a set
$M'$
with full measure for all sufficiently hyperbolic ergodic invariant probability measures, but the set
$M'$
was not identified there. We improve the construction in a way that enables
$M'$
to be identified explicitly. One application is the coding of infinite conservative measures on the homoclinic classes of Rodriguez-Hertz et al. [Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Comm. Math. Phys.306(1) (2011), 35–49].
We show that a cellular automaton (or shift-endomorphism) on a transitive subshift is either almost equicontinuous or sensitive. On the other hand, we construct a cellular automaton on a full shift (hence a transitive subshift) that is neither almost mean equicontinuous nor mean sensitive.
We study and classify proper q-colourings of the ℤd lattice, identifying three regimes where different combinatorial behaviour holds. (1) When
$q\le d+1$
, there exist frozen colourings, that is, proper q-colourings of ℤd which cannot be modified on any finite subset. (2) We prove a strong list-colouring property which implies that, when
$q\ge d+2$
, any proper q-colouring of the boundary of a box of side length
$n \ge d+2$
can be extended to a proper q-colouring of the entire box. (3) When
$q\geq 2d+1$
, the latter holds for any
$n \ge 1$
. Consequently, we classify the space of proper q-colourings of the ℤd lattice by their mixing properties.
We study the rotation sets for homeomorphisms homotopic to the identity on the torus
$\mathbb T^d$
,
$d\ge 2$
. In the conservative setting, we prove that there exists a Baire residual subset of the set
$\text {Homeo}_{0, \lambda }(\mathbb T^2)$
of conservative homeomorphisms homotopic to the identity so that the set of points with wild pointwise rotation set is a Baire residual subset in
$\mathbb T^2$
, and that it carries full topological pressure and full metric mean dimension. Moreover, we prove that for every
$d\ge 2$
the rotation set of
$C^0$
-generic conservative homeomorphisms on
$\mathbb T^d$
is convex. Related results are obtained in the case of dissipative homeomorphisms on tori. The previous results rely on the description of the topological complexity of the set of points with wild historic behavior and on the denseness of periodic measures for continuous maps with the gluing orbit property.
We show that for good measures, the set of homeomorphisms of Cantor space which preserve that measure and which have no invariant clopen sets contains a residual set of homeomorphisms which are uniquely ergodic. Additionally, we show that for refinable Bernoulli trial measures, the same set of homeomorphisms contains a residual set of homeomorphisms which admit only finitely many ergodic measures.
Given a positive integer M and
$q \in (1, M+1]$
we consider expansions in base q for real numbers
$x \in [0, {M}/{q-1}]$
over the alphabet
$\{0, \ldots , M\}$
. In particular, we study some dynamical properties of the natural occurring subshift
$(\boldsymbol{{V}}_q, \sigma )$ related to unique expansions in such base q. We characterize the set of
$q \in \mathcal {V} \subset (1,M+1]$
such that
$(\boldsymbol{{V}}_q, \sigma )$
has the specification property and the set of
$q \in \mathcal {V}$
such that
$(\boldsymbol{{V}}_q, \sigma )$
is a synchronized subshift. Such properties are studied by analysing the combinatorial and dynamical properties of the quasi-greedy expansion of q. We also calculate the size of such classes as subsets of
$\mathcal {V}$
giving similar results to those shown by Blanchard [
10
] and Schmeling in [
36
] in the context of
$\beta $
-transformations.
We describe topological obstructions (involving periodic points, topological entropy and rotation sets) for a homeomorphism on a compact manifold to embed in a continuous flow. We prove that homeomorphisms in a $C^{0}$-open and dense set of homeomorphisms isotopic to the identity in compact manifolds of dimension at least two are not the time-1 map of a continuous flow. Such property is also true for volume-preserving homeomorphisms in compact manifolds of dimension at least five. In the case of conservative homeomorphisms of the torus $\mathbb {T}^{d} (d\ge 2)$ isotopic to identity, we describe necessary conditions for a homeomorphism to be flowable in terms of the rotation sets.
To every dynamical system $(X,\varphi )$ over a totally disconnected compact space, we associate a left-orderable group $T(\varphi )$. It is defined as a group of homeomorphisms of the suspension of $(X,\varphi )$ which preserve every orbit of the suspension flow and act by dyadic piecewise linear homeomorphisms in the flow direction. We show that if the system is minimal, the group is simple and, if it is a subshift, then the group is finitely generated. The proofs of these two statements are short and elementary, providing straightforward examples of finitely generated simple left-orderable groups. We show that if the system is minimal, every action of the corresponding group on the circle has a fixed point. These constitute the first examples of finitely generated left-orderable groups with this fixed point property. We show that for every system $(X,\varphi )$, the group $T(\varphi )$ does not have infinite subgroups with Kazhdan's property $(T)$. In addition, we show that for every minimal subshift, the corresponding group is never finitely presentable. Finally, if $(X,\varphi )$ has a dense orbit, then the isomorphism type of the group $T(\varphi )$ is a complete invariant of flow equivalence of the pair $\{\varphi , \varphi ^{-1}\}$.
In this paper, we extend to the non-Hille–Yosida case a variation of constants formula for a nonautonomous and nonhomogeneous Cauchy problems first obtained by Gühring and Räbiger. By using this variation of constants formula, we derive a necessary and sufficient condition for the existence of an exponential dichotomy for the evolution family generated by the associated nonautonomous homogeneous problem. We also prove a persistence result of the exponential dichotomy for small perturbations. Finally, we illustrate our results by considering two examples. The first example is a parabolic equation with nonlocal and nonautonomous boundary conditions, and the second example is an age-structured model that is a hyperbolic equation.
For a locally compact group G, we study the distality of the action of automorphisms T of G on SubG, the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on SubG if and only if Tn is the identity map for some
$n\in\mathbb N$
. As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on SubG if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on SubG if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on SubG. We also show that any compactly generated distal group G is Lie projective.
Furstenberg [Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory1 (1967), 1–49] calculated the Hausdorff and Minkowski dimensions of one-sided subshifts in terms of topological entropy. We generalize this to $\mathbb{Z}^{2}$-subshifts. Our generalization involves mean dimension theory. We calculate the metric mean dimension and the mean Hausdorff dimension of $\mathbb{Z}^{2}$-subshifts with respect to a subaction of $\mathbb{Z}$. The resulting formula is quite analogous to Furstenberg’s theorem. We also calculate the rate distortion dimension of $\mathbb{Z}^{2}$-subshifts in terms of Kolmogorov–Sinai entropy.
In the pioneering work by Dimitrov–Haiden–Katzarkov–Kontsevich, they introduced various categorical analogies from the classical theory of dynamical systems. In particular, they defined the entropy of an endofunctor on a triangulated category with a split generator. In the connection between the categorical theory and the classical theory, a stability condition on a triangulated category plays the role of a measured foliation so that one can measure the “volume” of objects, called the mass, via the stability condition. The aim of this paper is to establish fundamental properties of the growth rate of mass of objects under the mapping by the endofunctor and to clarify the relationship between it and the entropy. We also show that they coincide under a certain condition.
Let $\unicode[STIX]{x1D6E4}$ denote the mapping class group of the plane minus a Cantor set. We show that every action of $\unicode[STIX]{x1D6E4}$ on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.