To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a Tits alternative for topological full groups of minimal actions of finitely generated groups. On the one hand, we show that topological full groups of minimal actions of virtually cyclic groups are amenable. By doing so, we generalize the result of Juschenko and Monod for $\mathbf{Z}$-actions. On the other hand, when a finitely generated group $G$ is not virtually cyclic, then we construct a minimal free action of $G$ on a Cantor space such that the topological full group contains a non-abelian free group.
Consider the action of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on the $p$-adic unit sphere ${\mathcal{S}}_{n}$ arising from the linear action on $\mathbb{Q}_{p}^{n}\setminus \{0\}$. We show that for the action of a semigroup $\mathfrak{S}$ of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on ${\mathcal{S}}_{n}$, the following are equivalent: (1) $\mathfrak{S}$ acts distally on ${\mathcal{S}}_{n}$; (2) the closure of the image of $\mathfrak{S}$ in $\operatorname{PGL}(n,\mathbb{Q}_{p})$ is a compact group. On ${\mathcal{S}}_{n}$, we consider the ‘affine’ maps $\overline{T}_{a}$ corresponding to $T$ in $\operatorname{GL}(n,\mathbb{Q}_{p})$ and a nonzero $a$ in $\mathbb{Q}_{p}^{n}$ satisfying $\Vert T^{-1}(a)\Vert _{p}<1$. We show that there exists a compact open subgroup $V$, which depends on $T$, such that $\overline{T}_{a}$ is distal for every nonzero $a\in V$ if and only if $T$ acts distally on ${\mathcal{S}}_{n}$. The dynamics of ‘affine’ maps on $p$-adic unit spheres is quite different from that on the real unit spheres.
We introduce the notions of directional dynamical cubes and directional regionally proximal relation defined via these cubes for a minimal $\mathbb{Z}^{d}$-system $(X,T_{1},\ldots ,T_{d})$. We study the structural properties of systems that satisfy the so-called unique closing parallelepiped property and we characterize them in several ways. In the distal case, we build the maximal factor of a $\mathbb{Z}^{d}$-system $(X,T_{1},\ldots ,T_{d})$ that satisfies this property by taking the quotient with respect to the directional regionally proximal relation. Finally, we completely describe distal $\mathbb{Z}^{d}$-systems that enjoy the unique closing parallelepiped property and provide explicit examples.
A one-sided shift of finite type $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines on the one hand a Cuntz–Krieger algebra ${\mathcal{O}}_{A}$ with a distinguished abelian subalgebra ${\mathcal{D}}_{A}$ and a certain completely positive map $\unicode[STIX]{x1D70F}_{A}$ on ${\mathcal{O}}_{A}$. On the other hand, $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines a groupoid ${\mathcal{G}}_{A}$ together with a certain homomorphism $\unicode[STIX]{x1D716}_{A}$ on ${\mathcal{G}}_{A}$. We show that each of these two sets of data completely characterizes the one-sided conjugacy class of $\mathsf{X}_{A}$. This strengthens a result of Cuntz and Krieger. We also exhibit an example of two irreducible shifts of finite type which are eventually conjugate but not conjugate. This provides a negative answer to a question of Matsumoto of whether eventual conjugacy implies conjugacy.
In this paper, it is shown that if a dynamical system is null and distal, then it is equicontinuous. It turns out that a null system with closed proximal relation is mean equicontinuous. As a direct application, it follows that a null dynamical system with dense minimal points is also mean equicontinuous. Meanwhile, a distal system with trivial $\text{Ind}_{\text{fip}}$-pairs and a non-trivial regionally proximal relation of order $\infty$ are constructed.
We conjecture that bounded generalised polynomial functions cannot be generated by finite automata, except for the trivial case when they are ultimately periodic.
Using methods from ergodic theory, we are able to partially resolve this conjecture, proving that any hypothetical counterexample is periodic away from a very sparse and structured set. In particular, we show that for a polynomial $p(n)$ with at least one irrational coefficient (except for the constant one) and integer $m\geqslant 2$, the sequence $\lfloor p(n)\rfloor \hspace{0.2em}{\rm mod}\hspace{0.2em}m$ is never automatic.
We also prove that the conjecture is equivalent to the claim that the set of powers of an integer $k\geqslant 2$ is not given by a generalised polynomial.
We construct a multiply Xiong chaotic set with full Hausdorff dimension everywhere that is contained in some multiply proximal cell for the full shift over finite symbols and the Gauss system, respectively.
We show that Matui’s HK conjecture holds for groupoids of unstable equivalence relations and their corresponding $C^{\ast }$-algebras on one-dimensional solenoids.
We study the differentiability properties of the topological equivalence between a uniformly asymptotically stable linear nonautonomous system and a perturbed system with suitable nonlinearities. For this purpose, we construct a homeomorphism inspired in the Palmer's one restricted to the positive half line, studying additional continuity properties and providing sufficient conditions ensuring its Cr–smoothness.
We study continuous countably (strictly) monotone maps defined on a tame graph, i.e. a special Peano continuum for which the set containing branch points and end points has countable closure. In our investigation we confine ourselves to the countable Markov case. We show a necessary and sufficient condition under which a locally eventually onto, countably Markov map $f$ of a tame graph $G$ is conjugate to a map $g$ of constant slope. In particular, we show that in the case of a Markov map $f$ that corresponds to a recurrent transition matrix, the condition is satisfied for a constant slope $e^{h_{\text{top}}(f)}$, where $h_{\text{top}}(f)$ is the topological entropy of $f$. Moreover, we show that in our class the topological entropy $h_{\text{top}}(f)$ is achievable through horseshoes of the map $f$.
A celebrated result by Bourgain and Wierdl states that ergodic averages along primes converge almost everywhere for $L^{p}$-functions, $p>1$, with a polynomial version by Wierdl and Nair. Using an anti-correlation result for the von Mangoldt function due to Green and Tao, we observe everywhere convergence of such averages for nilsystems and continuous functions.
In this paper we give an answer to Furstenberg’s problem on topological disjointness. Namely, we show that a transitive system $(X,T)$ is disjoint from all minimal systems if and only if $(X,T)$ is weakly mixing and there is some countable dense subset $D$ of $X$ such that for any minimal system $(Y,S)$, any point $y\in Y$ and any open neighbourhood $V$ of $y$, and for any non-empty open subset $U\subset X$, there is $x\in D\cap U$ such that $\{n\in \mathbb{Z}_{+}:T^{n}x\in U,S^{n}y\in V\}$ is syndetic. Some characterization for the general case is also given. By way of application we show that if a transitive system $(X,T)$ is disjoint from all minimal systems, then so are $(X^{n},T^{(n)})$ and $(X,T^{n})$ for any $n\in \mathbb{N}$. It turns out that a transitive system $(X,T)$ is disjoint from all minimal systems if and only if the hyperspace system $(K(X),T_{K})$ is disjoint from all minimal systems.
A nilspace system is a generalization of a nilsystem, consisting of a compact nilspace $\text{X}$ equipped with a group of nilspace translations acting on $\text{X}$. Nilspace systems appear in different guises in several recent works and this motivates the study of these systems per se as well as their relation to more classical types of systems. In this paper we study morphisms of nilspace systems, i.e., nilspace morphisms with the additional property of being consistent with the actions of the given translations. A nilspace morphism does not necessarily have this property, but one of our main results shows that it factors through some other morphism which does have the property. As an application we obtain a strengthening of the inverse limit theorem for compact nilspaces, valid for nilspace systems. This is used in work of the first- and third-named authors to generalize the celebrated structure theorem of Host and Kra on characteristic factors.
In this article, we consider a twisted partial action $\unicode[STIX]{x1D6FC}$ of a group $G$ on an associative ring $R$ and its associated partial crossed product $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$. We provide necessary and sufficient conditions for the commutativity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ when the twisted partial action $\unicode[STIX]{x1D6FC}$ is unital. Moreover, we study necessary and sufficient conditions for the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ in the following cases: (i) $G$ is abelian; (ii) $R$ is maximal commutative in $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$; (iii) $C_{R\ast _{\unicode[STIX]{x1D6FC}}^{w}G}(Z(R))$ is simple; (iv) $G$ is hypercentral. When $R=C_{0}(X)$ is the algebra of continuous functions defined on a locally compact and Hausdorff space $X$, with complex values that vanish at infinity, and $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ is the associated partial skew group ring of a partial action $\unicode[STIX]{x1D6FC}$ of a topological group $G$ on $C_{0}(X)$, we study the simplicity of $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ by using topological properties of $X$ and the results about the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$.
Let $(X_{A},\unicode[STIX]{x1D70E}_{A})$ be a shift of finite type and $\text{Aut}(\unicode[STIX]{x1D70E}_{A})$ its corresponding automorphism group. Associated to $\unicode[STIX]{x1D719}\in \text{Aut}(\unicode[STIX]{x1D70E}_{A})$ are certain Lyapunov exponents $\unicode[STIX]{x1D6FC}^{-}(\unicode[STIX]{x1D719}),\unicode[STIX]{x1D6FC}^{+}(\unicode[STIX]{x1D719})$, which describe asymptotic behavior of the sequence of coding ranges of $\unicode[STIX]{x1D719}^{n}$. We give lower bounds on $\unicode[STIX]{x1D6FC}^{-}(\unicode[STIX]{x1D719}),\unicode[STIX]{x1D6FC}^{+}(\unicode[STIX]{x1D719})$ in terms of the spectral radius of the corresponding action of $\unicode[STIX]{x1D719}$ on the dimension group associated to $(X_{A},\unicode[STIX]{x1D70E}_{A})$. We also give lower bounds on the topological entropy $h_{\text{top}}(\unicode[STIX]{x1D719})$ in terms of a distinguished part of the spectrum of the action of $\unicode[STIX]{x1D719}$ on the dimension group, but show that, in general, $h_{\text{top}}(\unicode[STIX]{x1D719})$ is not bounded below by the logarithm of the spectral radius of the action of $\unicode[STIX]{x1D719}$ on the dimension group.
For $\unicode[STIX]{x1D6FD}\in (1,2]$ the $\unicode[STIX]{x1D6FD}$-transformation $T_{\unicode[STIX]{x1D6FD}}:[0,1)\rightarrow [0,1)$ is defined by $T_{\unicode[STIX]{x1D6FD}}(x)=\unicode[STIX]{x1D6FD}x\hspace{0.6em}({\rm mod}\hspace{0.2em}1)$. For $t\in [0,1)$ let $K_{\unicode[STIX]{x1D6FD}}(t)$ be the survivor set of $T_{\unicode[STIX]{x1D6FD}}$ with hole $(0,t)$ given by
$$\begin{eqnarray}K_{\unicode[STIX]{x1D6FD}}(t):=\{x\in [0,1):T_{\unicode[STIX]{x1D6FD}}^{n}(x)\not \in (0,t)\text{ for all }n\geq 0\}.\end{eqnarray}$$
In this paper we characterize the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ of all parameters $t\in [0,1)$ for which the set-valued function $t\mapsto K_{\unicode[STIX]{x1D6FD}}(t)$ is not locally constant. We show that $E_{\unicode[STIX]{x1D6FD}}$ is a Lebesgue null set of full Hausdorff dimension for all $\unicode[STIX]{x1D6FD}\in (1,2)$. We prove that for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1,2)$ the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ contains infinitely many isolated points and infinitely many accumulation points arbitrarily close to zero. On the other hand, we show that the set of $\unicode[STIX]{x1D6FD}\in (1,2)$ for which $E_{\unicode[STIX]{x1D6FD}}$ contains no isolated points has zero Hausdorff dimension. These results contrast with the situation for $E_{2}$, the bifurcation set of the doubling map. Finally, we give for each $\unicode[STIX]{x1D6FD}\in (1,2)$ a lower and an upper bound for the value $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$ such that the Hausdorff dimension of $K_{\unicode[STIX]{x1D6FD}}(t)$ is positive if and only if $t<\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$. We show that $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}\leq 1-(1/\unicode[STIX]{x1D6FD})$ for all $\unicode[STIX]{x1D6FD}\in (1,2)$.
We consider a one-parameter family of dynamical systems $W:[0,1]\rightarrow [0,1]$ constructed from a pair of monotone increasing diffeomorphisms $W_{i}$ such that $W_{i}^{-1}:$$[0,1]\rightarrow [0,1]$$(i=0,1)$. We characterise the set of symbolic itineraries of $W$ using an attractor $\overline{\unicode[STIX]{x1D6FA}}$ of an iterated closed relation, in the terminology of McGehee, and prove that there is a member of the family for which $\overline{\unicode[STIX]{x1D6FA}}$ is symmetrical.
We show that if there exists a counter example for the rational case of the Franks–Misiurewicz conjecture, then it must exhibit unbounded deviations in the complementary direction of its rotation set.
We show that systems with some specification properties are topologically or almost Borel universal, in the sense that any aperiodic subshift with lower entropy may be topologically or almost Borel embedded. This improves, with elementary tools, previous results of Quas and Soo [Ergodic universality of some topological dynamical systems. Trans. Amer. Math. Soc.368 (2016), 4137–4170].
We analyse local aspects of chaos for nonautonomous periodic dynamical systems in the context of generating autonomous dynamical systems and the possibility of disturbing them.