We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study lattice embeddings for the class of countable groups $\unicode[STIX]{x1D6E4}$ defined by the property that the largest amenable uniformly recurrent subgroup ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is continuous. When ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ comes from an extremely proximal action and the envelope of ${\mathcal{A}}_{\unicode[STIX]{x1D6E4}}$ is coamenable in $\unicode[STIX]{x1D6E4}$, we obtain restrictions on the locally compact groups $G$ that contain a copy of $\unicode[STIX]{x1D6E4}$ as a lattice, notably regarding normal subgroups of $G$, product decompositions of $G$, and more generally dense mappings from $G$ to a product of locally compact groups.
Subshifts with property $(A)$ are constructed from a class of directed graphs. As special cases the Markov–Dyck shifts are shown to have property $(A)$. The semigroups that are associated to ${\mathcal{R}}$-graph shifts with Property $(A)$ are determined.
We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configurations; we characterize the classes of Turing degrees that can be represented by quasiperiodic shifts of finite type. We also transpose to the classes of minimal/quasiperiodic shifts of finite type some results on subdynamics previously known for effective shifts without restrictions: every effective minimal (quasiperiodic) shift of dimension $d$ can be represented as a projection of a subdynamics of a minimal (respectively, quasiperiodic) shift of finite type of dimension $d+1$.
Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.
A well-known result in the area of dynamical systems asserts that any invertible hyperbolic operator on any Banach space is structurally stable. This result was originally obtained by Hartman in 1960 for operators on finite-dimensional spaces. The general case was independently obtained by Palis and Pugh around 1968. We will exhibit a class of examples of structurally stable operators that are not hyperbolic, thereby showing that the converse of the above-mentioned result is false in general. We will also prove that an invertible operator on a Banach space is hyperbolic if and only if it is expansive and has the shadowing property. Moreover, we will show that if a structurally stable operator is expansive, then it must be uniformly expansive. Finally, we will characterize the weighted shifts on the spaces $c_{0}(\mathbb{Z})$ and $\ell _{p}(\mathbb{Z})$ ($1\leq p<\infty$) that satisfy the shadowing property.
The field of descriptive combinatorics investigates to what extent classical combinatorial results and techniques can be made topologically or measure-theoretically well behaved. This paper examines a class of coloring problems induced by actions of countable groups on Polish spaces, with the requirement that the desired coloring be Baire measurable. We show that the set of all such coloring problems that admit a Baire measurable solution for a particular free action $\unicode[STIX]{x1D6FC}$ is complete analytic (apart from the trivial situation when the orbit equivalence relation induced by $\unicode[STIX]{x1D6FC}$ is smooth on a comeager set); this result confirms the ‘hardness’ of finding a topologically well-behaved coloring. When $\unicode[STIX]{x1D6FC}$ is the shift action, we characterize the class of problems for which $\unicode[STIX]{x1D6FC}$ has a Baire measurable coloring in purely combinatorial terms; it turns out that closely related concepts have already been studied in graph theory with no relation to descriptive set theory. We remark that our framework permits a wholly dynamical interpretation (with colorings corresponding to equivariant maps to a given subshift), so this article can also be viewed as a contribution to generic dynamics.
In this article, we calculate the Ellis semigroup of a certain class of constant-length substitutions. This generalizes a result of Haddad and Johnson [IP cluster points, idempotents, and recurrent sequences. Topology Proc.22 (1997) 213–226] from the binary case to substitutions over arbitrarily large finite alphabets. Moreover, we provide a class of counterexamples to one of the propositions in their paper, which is central to the proof of their main theorem. We give an alternative approach to their result, which centers on the properties of the Ellis semigroup. To do this, we also show a new way to construct an almost automorphic–isometric tower to the maximal equicontinuous factor of these systems, which gives a more particular approach than the one given by Dekking [The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahrscheinlichkeitstheor. Verw. Geb.41(3) (1977/78) 221–239].
We improve a recent result by giving the optimal conclusion both to the frequent universality criterion and the frequent hypercyclicity criterion using the notion of $A$-densities, where $A$ refers to some weighted densities sharper than the natural lower density. Moreover, we construct an operator which is logarithmically frequently hypercyclic but not frequently hypercyclic.
This paper establishes a fundamental difference between $\mathbb{Z}$ subshifts of finite type and $\mathbb{Z}^{2}$ subshifts of finite type in the context of ergodic optimization. Specifically, we consider a subshift of finite type $X$ as a subset of a full shift $F$. We then introduce a natural penalty function $f$, defined on $F$, which is 0 if the local configuration near the origin is legal and $-1$ otherwise. We show that in the case of $\mathbb{Z}$ subshifts, for all sufficiently small perturbations, $g$, of $f$, the $g$-maximizing invariant probability measures are supported on $X$ (that is, the set $X$ is stably maximized by $f$). However, in the two-dimensional case, we show that the well-known Robinson tiling fails to have this property: there exist arbitrarily small perturbations, $g$, of $f$ for which the $g$-maximizing invariant probability measures are supported on $F\setminus X$.
We study dynamical systems that have bounded complexity with respect to three kinds metrics: the Bowen metric $d_{n}$, the max-mean metric $\hat{d}_{n}$ and the mean metric $\bar{d}_{n}$, both in topological dynamics and ergodic theory. It is shown that a topological dynamical system $(X,T)$ has bounded complexity with respect to $d_{n}$ (respectively $\hat{d}_{n}$) if and only if it is equicontinuous (respectively equicontinuous in the mean). However, we construct minimal systems that have bounded complexity with respect to $\bar{d}_{n}$ but that are not equicontinuous in the mean. It turns out that an invariant measure $\unicode[STIX]{x1D707}$ on $(X,T)$ has bounded complexity with respect to $d_{n}$ if and only if $(X,T)$ is $\unicode[STIX]{x1D707}$-equicontinuous. Meanwhile, it is shown that $\unicode[STIX]{x1D707}$ has bounded complexity with respect to $\hat{d}_{n}$ if and only if $\unicode[STIX]{x1D707}$ has bounded complexity with respect to $\bar{d}_{n}$, if and only if $(X,T)$ is $\unicode[STIX]{x1D707}$-mean equicontinuous and if and only if it has discrete spectrum.
We investigate the entropy for a class of upper semi-continuous set-valued functions, called Markov set-valued functions, that are a generalization of single-valued Markov interval functions. It is known that the entropy of a Markov interval function can be found by calculating the entropy of an associated shift of finite type. In this paper, we construct a similar shift of finite type for Markov set-valued functions and use this shift space to find upper and lower bounds on the entropy of the set-valued function.
Switched server systems are mathematical models of manufacturing, traffic and queueing systems that have being studied since the early 1990s. In particular, it is known that typically the dynamics of such systems is asymptotically periodic: each orbit of the system converges to one of its finitely many limit cycles. In this article, we provide an explicit example of a switched server system with exotic behaviour: each orbit of the system converges to the same Cantor attractor. To accomplish this goal, we bring together recent advances in the understanding of the topological dynamics of piecewise contractions and interval exchange transformations (IETs) with flips. The ultimate result is a switched server system whose Poincaré map is semiconjugate to a minimal and uniquely ergodic IET with flips.
We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$ with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.
A category structure for ordered Bratteli diagrams is proposed in which isomorphism coincides with the notion of equivalence of Herman, Putnam, and Skau. It is shown that the natural one-to-one correspondence between the category of Cantor minimal systems and the category of simple properly ordered Bratteli diagrams is in fact an equivalence of categories. This gives a Bratteli–Vershik model for factor maps between Cantor minimal systems. We give a construction of factor maps between Cantor minimal systems in terms of suitable maps (called premorphisms) between the corresponding ordered Bratteli diagrams, and we show that every factor map between two Cantor minimal systems is obtained in this way. Moreover, solving a natural question, we are able to characterize Glasner and Weiss’s notion of weak orbit equivalence of Cantor minimal systems in terms of the corresponding C*-algebra crossed products.
There is much research on the dynamical complexity on irregular sets and level sets of ergodic average from the perspective of density in base space, the Hausdorff dimension, Lebesgue positive measure, positive or full topological entropy (and topological pressure), etc. However, this is not the case from the viewpoint of chaos. There are many results on the relationship of positive topological entropy and various chaos. However, positive topological entropy does not imply a strong version of chaos, called DC1. Therefore, it is non-trivial to study DC1 on irregular sets and level sets. In this paper, we will show that, for dynamical systems with specification properties, there exist uncountable DC1-scrambled subsets in irregular sets and level sets. Meanwhile, we prove that several recurrent level sets of points with different recurrent frequency have uncountable DC1-scrambled subsets. The major argument in proving the above results is that there exists uncountable DC1-scrambled subsets in saturated sets.
We prove a Tits alternative for topological full groups of minimal actions of finitely generated groups. On the one hand, we show that topological full groups of minimal actions of virtually cyclic groups are amenable. By doing so, we generalize the result of Juschenko and Monod for $\mathbf{Z}$-actions. On the other hand, when a finitely generated group $G$ is not virtually cyclic, then we construct a minimal free action of $G$ on a Cantor space such that the topological full group contains a non-abelian free group.
Consider the action of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on the $p$-adic unit sphere ${\mathcal{S}}_{n}$ arising from the linear action on $\mathbb{Q}_{p}^{n}\setminus \{0\}$. We show that for the action of a semigroup $\mathfrak{S}$ of $\operatorname{GL}(n,\mathbb{Q}_{p})$ on ${\mathcal{S}}_{n}$, the following are equivalent: (1) $\mathfrak{S}$ acts distally on ${\mathcal{S}}_{n}$; (2) the closure of the image of $\mathfrak{S}$ in $\operatorname{PGL}(n,\mathbb{Q}_{p})$ is a compact group. On ${\mathcal{S}}_{n}$, we consider the ‘affine’ maps $\overline{T}_{a}$ corresponding to $T$ in $\operatorname{GL}(n,\mathbb{Q}_{p})$ and a nonzero $a$ in $\mathbb{Q}_{p}^{n}$ satisfying $\Vert T^{-1}(a)\Vert _{p}<1$. We show that there exists a compact open subgroup $V$, which depends on $T$, such that $\overline{T}_{a}$ is distal for every nonzero $a\in V$ if and only if $T$ acts distally on ${\mathcal{S}}_{n}$. The dynamics of ‘affine’ maps on $p$-adic unit spheres is quite different from that on the real unit spheres.
We introduce the notions of directional dynamical cubes and directional regionally proximal relation defined via these cubes for a minimal $\mathbb{Z}^{d}$-system $(X,T_{1},\ldots ,T_{d})$. We study the structural properties of systems that satisfy the so-called unique closing parallelepiped property and we characterize them in several ways. In the distal case, we build the maximal factor of a $\mathbb{Z}^{d}$-system $(X,T_{1},\ldots ,T_{d})$ that satisfies this property by taking the quotient with respect to the directional regionally proximal relation. Finally, we completely describe distal $\mathbb{Z}^{d}$-systems that enjoy the unique closing parallelepiped property and provide explicit examples.
A one-sided shift of finite type $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines on the one hand a Cuntz–Krieger algebra ${\mathcal{O}}_{A}$ with a distinguished abelian subalgebra ${\mathcal{D}}_{A}$ and a certain completely positive map $\unicode[STIX]{x1D70F}_{A}$ on ${\mathcal{O}}_{A}$. On the other hand, $(\mathsf{X}_{A},\unicode[STIX]{x1D70E}_{A})$ determines a groupoid ${\mathcal{G}}_{A}$ together with a certain homomorphism $\unicode[STIX]{x1D716}_{A}$ on ${\mathcal{G}}_{A}$. We show that each of these two sets of data completely characterizes the one-sided conjugacy class of $\mathsf{X}_{A}$. This strengthens a result of Cuntz and Krieger. We also exhibit an example of two irreducible shifts of finite type which are eventually conjugate but not conjugate. This provides a negative answer to a question of Matsumoto of whether eventual conjugacy implies conjugacy.
In this paper, it is shown that if a dynamical system is null and distal, then it is equicontinuous. It turns out that a null system with closed proximal relation is mean equicontinuous. As a direct application, it follows that a null dynamical system with dense minimal points is also mean equicontinuous. Meanwhile, a distal system with trivial $\text{Ind}_{\text{fip}}$-pairs and a non-trivial regionally proximal relation of order $\infty$ are constructed.