We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Suppose $(X,\unicode[STIX]{x1D70E})$ is a subshift, $P_{X}(n)$ is the word complexity function of $X$, and $\text{Aut}(X)$ is the group of automorphisms of $X$. We show that if $P_{X}(n)=o(n^{2}/\log ^{2}n)$, then $\text{Aut}(X)$ is amenable (as a countable, discrete group). We further show that if $P_{X}(n)=o(n^{2})$, then $\text{Aut}(X)$ can never contain a non-abelian free monoid (and, in particular, can never contain a non-abelian free subgroup). This is in contrast to recent examples, due to Salo and Schraudner, of subshifts with quadratic complexity that do contain such a monoid.
This paper provides a systematic study of fundamental combinatorial properties of one-dimensional, two-sided infinite simple Toeplitz subshifts. Explicit formulas for the complexity function, the palindrome complexity function and the repetitivity function are proved. Moreover, a complete description of the de Bruijn graphs of the subshifts is given. Finally, the Boshernitzan condition is characterized in terms of combinatorial quantities, based on a recent result of Liu and Qu [Uniform convergence of Schrödinger cocycles over simple Toeplitz subshift. Ann. Henri Poincaré12(1) (2011), 153–172]. Particular simple characterizations are provided for simple Toeplitz subshifts that correspond to the orbital Schreier graphs of the family of Grigorchuk’s groups, a class of subshifts that serves as the main example throughout the paper.
Abelian cellular automata (CAs) are CAs which are group endomorphisms of the full group shift when endowing the alphabet with an abelian group structure. A CA randomizes an initial probability measure if its iterated images have weak*-convergence towards the uniform Bernoulli measure (the Haar measure in this setting). We are interested in structural phenomena, i.e., randomization for a wide class of initial measures (under some mixing hypotheses). First, we prove that an abelian CA randomizes in Cesàro mean if and only if it has no soliton, i.e., a non-zero finite configuration whose time evolution remains bounded in space. This characterization generalizes previously known sufficient conditions for abelian CAs with scalar or commuting coefficients. Second, we exhibit examples of strong randomizers, i.e., abelian CAs randomizing in simple convergence; this is the first proof of this behaviour to our knowledge. We show, however, that no CA with commuting coefficients can be strongly randomizing. Finally, we show that some abelian CAs achieve partial randomization without being randomizing: the distribution of short finite words tends to the uniform distribution up to some threshold, but this convergence fails for larger words. Again this phenomenon cannot happen for abelian CAs with commuting coefficients.
We first improve an old result of McMahon and show that a metric minimal flow whose enveloping semigroup contains less than $2^{\mathfrak{c}}$ (where $\mathfrak{c}=2^{\aleph _{0}}$) minimal left ideals is proximal isometric (PI). Then we show the existence of various minimal PI-flows with many minimal left ideals, as follows. For the acting group $G=\text{SL}_{2}(\mathbb{R})^{\mathbb{N}}$, we construct a metric minimal PI $G$-flow with $\mathfrak{c}$ minimal left ideals. We then use this example and results established in Glasner and Weiss. [On the construction of minimal skew-products. Israel J. Math.34 (1979), 321–336] to construct a metric minimal PI cascade $(X,T)$ with $\mathfrak{c}$ minimal left ideals. We go on to construct an example of a minimal PI-flow $(Y,{\mathcal{G}})$ on a compact manifold $Y$ and a suitable path-wise connected group ${\mathcal{G}}$ of a homeomorphism of $Y$, such that the flow $(Y,{\mathcal{G}})$ is PI and has $2^{\mathfrak{c}}$ minimal left ideals. Finally, we use this latter example and a theorem of Dirbák to construct a cascade $(X,T)$ that is PI (of order three) and has $2^{\mathfrak{c}}$ minimal left ideals. Thus this final result shows that, even for cascades, the converse of the implication ‘less than $2^{\mathfrak{c}}$ minimal left ideals implies PI’, fails.
We decompose the topological stability (in the sense of P. Walters) into the corresponding notion for points. Indeed, we define a topologically stable point of a homeomorphism f as a point x such that for any C0-perturbation g of f there is a continuous semiconjugation defined on the g-orbit closure of x which tends to the identity as g tends to f. We obtain some properties of the topologically stable points, including preservation under conjugacy, vanishing for minimal homeomorphisms on compact manifolds, the fact that topologically stable chain recurrent points belong to the periodic point closure, and that the chain recurrent set coincides with the closure of the periodic points when all points are topologically stable. Next, we show that the topologically stable points of an expansive homeomorphism of a compact manifold are precisely the shadowable ones. Moreover, an expansive homeomorphism of a compact manifold is topologically stable if and only if every point is topologically stable. Afterwards, we prove that a pointwise recurrent homeomorphism of a compact manifold has no topologically stable points. Finally, we prove that every chain transitive homeomorphism with a topologically stable point of a compact manifold has the pseudo-orbit tracing property. Therefore, a chain transitive expansive homeomorphism of a compact manifold is topologically stable if and only if it has a topologically stable point.
Entropy of categorical dynamics is defined by Dimitrov–Haiden–Katzarkov–Kontsevich. Motivated by the fundamental theorem of the topological entropy due to Gromov–Yomdin, it is natural to ask an equality between the entropy and the spectral radius of induced morphisms on the numerical Grothendieck group. In this paper, we add two results on this equality: the lower bound in a general setting and the equality for orbifold projective lines.
We show that if a finitely generated group $G$ has a nonelementary WPD action on a hyperbolic metric space $X$, then the number of $G$-conjugacy classes of $X$-loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentially in $R$. As an application we prove that for $N\geq 3$ the number of distinct $\text{Out}(F_{N})$-conjugacy classes of fully irreducible elements $\unicode[STIX]{x1D719}$ from an $R$-ball in the Cayley graph of $\text{Out}(F_{N})$ with $\log \unicode[STIX]{x1D706}(\unicode[STIX]{x1D719})$ of the order of $R$ grows exponentially in $R$.
Many fundamental properties of graph C*-algebras may be determined directly from the structure of the underlying graph, and because of this, they have been celebrated as C*-algebras that can be seen. This paper shows how permutative endomorphisms of graph C*-algebras can be represented by labelled directed multigraphs that give visual representations of the endomorphisms and facilitate computations. This formalism provides a useful calculus for permutative automorphisms and allows efficient exhaustive construction of such automorphisms.
In a general setting of an ergodic dynamical system, we give a more accurate calculation of the speed of the recurrence of a point to itself (or to a fixed point). Precisely, we show that for a certain $\unicode[STIX]{x1D709}$ depending on the dimension of the space, $\liminf _{n\rightarrow +\infty }(n\log \log n)^{\unicode[STIX]{x1D709}}d(T^{n}x,x)=0$ almost everywhere and $\liminf _{n\rightarrow +\infty }(n\log \log n)^{\unicode[STIX]{x1D709}}d(T^{n}x,y)=0$ for almost all $x$ and $y$. This is done by assuming the exponential decay of correlations and making a weak assumption on the invariant measure.
We examine dynamical systems which are ‘nonchaotic’ on a big (in the sense of Lebesgue measure) set in each neighbourhood of a fixed point $x_{0}$, that is, the entropy of this system is zero on a set for which $x_{0}$ is a density point. Considerations connected with this family of functions are linked with functions attracting positive entropy at $x_{0}$, that is, each mapping sufficiently close to the function has positive entropy on each neighbourhood of $x_{0}$.
We consider stable and almost stable points of autonomous and nonautonomous discrete dynamical systems defined on the closed unit interval. Our considerations are associated with chaos theory by adding an additional assumption that an entropy of a function at a given point is infinite.
We present a general framework for automatic continuity results for groups of isometries of metric spaces. In particular, we prove automatic continuity property for the groups of isometries of the Urysohn space and the Urysohn sphere, i.e. that any homomorphism from either of these groups into a separable group is continuous. This answers a question of Ben Yaacov, Berenstein and Melleray. As a consequence, we get that the group of isometries of the Urysohn space has unique Polish group topology and the group of isometries of the Urysohn sphere has unique separable group topology. Moreover, as an application of our framework we obtain new proofs of the automatic continuity property for the group $\text{Aut}([0,1],\unicode[STIX]{x1D706})$, due to Ben Yaacov, Berenstein and Melleray and for the unitary group of the infinite-dimensional separable Hilbert space, due to Tsankov.
Ott, Tomforde and Willis proposed a useful compactification for one-sided shifts over infinite alphabets. Building from their idea, we develop a notion of two-sided shift spaces over infinite alphabets, with an eye towards generalizing a result of Kitchens. As with the one-sided shifts over infinite alphabets, our shift spaces are compact Hausdorff spaces but, in contrast to the one-sided setting, our shift map is continuous everywhere. We show that many of the classical results from symbolic dynamics are still true for our two-sided shift spaces. In particular, while for one-sided shifts the problem about whether or not any $M$-step shift is conjugate to an edge shift space is open, for two-sided shifts we can give a positive answer for this question.
We present a family of continuous piecewise linear maps of the unit interval into itself that are all chaotic in the sense of Li and Yorke [‘Period three implies chaos’, Amer. Math. Monthly82 (1975), 985–992] and for which almost every point (in the sense of Lebesgue) in the unit interval is an eventually periodic point of period $p,p\geq 3$, for a member of the family.
A classical article by Misiurewicz and Ziemian (J. Lond. Math. Soc.40(2) (1989), 490–506) classifies the elements in Homeo$_{0}(\mathbf{T}^{2})$ by their rotation set $\unicode[STIX]{x1D70C}$, according to wether $\unicode[STIX]{x1D70C}$ is a point, a segment or a set with nonempty interior. A recent classification of nonwandering elements in Homeo$_{0}(\mathbf{T}^{2})$ by Koropecki and Tal was given in (Invent. Math.196 (2014), 339–381), according to the intrinsic underlying ambient space where the dynamics takes place: planar, annular and strictly toral maps. We study the link between these two classifications, showing that, even abroad the nonwandering setting, annular maps are characterized by rotation sets which are rational segments. Also, we obtain information on the sublinear diffusion of orbits in the—not very well understood—case that $\unicode[STIX]{x1D70C}$ has nonempty interior.
This paper is devoted to probabilistic cellular automata (PCAs) on N,Z or Z / nZ, depending on two neighbors with a general alphabet E (finite or infinite, discrete or not). We study the following question: under which conditions does a PCA possess a Markov chain as an invariant distribution? Previous results in the literature give some conditions on the transition matrix (for positive rate PCAs) when the alphabet E is finite. Here we obtain conditions on the transition kernel of a PCA with a general alphabet E. In particular, we show that the existence of an invariant Markov chain is equivalent to the existence of a solution to a cubic integral equation. One of the difficulties in passing from a finite alphabet to a general alphabet comes from the problem of measurability, and a large part of this work is devoted to clarifying these issues.
We prove that if $G_{P}$ is a finitely constrained group of binary rooted tree automorphisms (a group binary tree subshift of finite type) defined by an essential pattern group $P$ of pattern size $d$, $d\geq 2$, and if $G_{P}$ has maximal Hausdorff dimension (equal to $1-1/2^{d-1}$), then $G_{P}$ is not topologically finitely generated. We describe precisely all essential pattern groups $P$ that yield finitely constrained groups with maximal Hausdorff dimension. For a given size $d$, $d\geq 2$, there are exactly $2^{d-1}$ such pattern groups and they are all maximal in the group of automorphisms of the finite rooted regular tree of depth $d$.
For a finite alphabet ${\mathcal{A}}$ and shift $X\subseteq {\mathcal{A}}^{\mathbb{Z}}$ whose factor complexity function grows at most linearly, we study the algebraic properties of the automorphism group $\text{Aut}(X)$. For such systems, we show that every finitely generated subgroup of $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$, in contrast to the behavior when the complexity function grows more quickly. With additional dynamical assumptions we show more: if $X$ is transitive, then $\text{Aut}(X)$ is virtually $\mathbb{Z}$; if $X$ has dense aperiodic points, then $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$. We also classify all finite groups that arise as the automorphism group of a shift.
We provide a computation of the Čech cohomology of the pinwheel tiling using the Anderson–Putnam complex. A border-forcing version of the pinwheel tiling is produced that allows an explicit construction of the complex for the quotient of the continuous hull by the circle. The cohomology of the continuous hull is given using a spectral sequence argument of Barge, Diamond, Hunton and Sadun.