To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The definition of subshifts of finite symbolic rank is motivated by the finite rank measure-preserving transformations which have been extensively studied in ergodic theory. In this paper, we study subshifts of finite symbolic rank as essentially minimal Cantor systems. We show that minimal subshifts of finite symbolic rank have finite topological rank, and conversely, every minimal Cantor system of finite topological rank is either an odometer or conjugate to a minimal subshift of finite symbolic rank. We characterize the class of all minimal Cantor systems conjugate to a rank-$1$ subshift and show that it is dense but not generic in the Polish space of all minimal Cantor systems. Within some different Polish coding spaces of subshifts, we also show that the rank-1 subshifts are dense but not generic. Finally, we study topological factors of minimal subshifts of finite symbolic rank. We show that every infinite odometer and every irrational rotation is the maximal equicontinuous factor of a minimal subshift of symbolic rank $2$, and that a subshift factor of a minimal subshift of finite symbolic rank has finite symbolic rank.
We present a streamlined proof of a result essentially presented by the author in [Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys.28(4) (2008), 1291–1322], namely that for every set $S = \{s_1, s_2, \ldots \} \subset \mathbb {N}$ of zero Banach density and finite set A, there exists a minimal zero-entropy subshift $(X, \sigma )$ so that for every sequence $u \in A^{\mathbb {Z}}$, there is $x_u \in X$ with $x_u(s_n) = u(n)$ for all $n \in \mathbb {N}$. Informally, minimal deterministic sequences can achieve completely arbitrary behavior upon restriction to a set of zero Banach density. As a corollary, this provides counterexamples to the polynomial Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. C. R. Math. Acad. Sci. Paris353(7) (2015), 569–572] which are significantly more general than some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem for analytic skew products. Ann. of Math. (2)199 (2024), 591–705] and by Lian and Shi [A counter-example for polynomial version of Sarnak’s conjecture. Adv. Math.384 (2021), Paper no. 107765] and shows that no similar result can hold under only the assumptions of minimality and zero entropy.
Two asymptotic configurations on a full $\mathbb {Z}^d$-shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$. We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to $\mathbb {Z}^d$ of the characterization of Sturmian sequences by their factor complexity $n+1$. Many open questions are raised by the current work and are listed in the introduction.
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
Given a countable group G and a G-flow X, a probability measure $\mu $ on X is called characteristic if it is $\mathrm {Aut}(X, G)$-invariant. Frisch and Tamuz asked about the existence of a minimal G-flow, for any group G, which does not admit a characteristic measure. We construct for every countable group G such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group G and a collection of infinite subgroups $\{\Delta _i: i\in I\}$, when is there a faithful G-flow for which every $\Delta _i$ acts minimally?
The box-ball system (BBS), which was introduced by Takahashi and Satsuma in 1990, is a soliton cellular automaton. Its dynamics can be linearized by a few methods, among which the best known is the Kerov–Kirillov–Reschetikhin (KKR) bijection using rigged partitions. Recently, a new linearization method in terms of ‘slot configurations’ was introduced by Ferrari–Nguyen–Rolla–Wang, but its relations to existing ones have not been clarified. In this paper, we investigate this issue and clarify the relation between the two linearizations. For this, we introduce a novel way of describing the BBS dynamics using a carrier with seat numbers. We show that the seat number configuration also linearizes the BBS and reveals explicit relations between the KKR bijection and the slot configuration. In addition, by using these explicit relations, we also show that even in case of finite carrier capacity the BBS can be linearized via the slot configuration.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
Pavlov [Adv. Math.295 (2016), 250–270; Nonlinearity32 (2019), 2441–2466] studied the measures of maximal entropy for dynamical systems with weak versions of specification property and found the existence of intrinsic ergodicity would be influenced by the assumptions of the gap functions. Inspired by these, in this article, we study the dynamical systems with non-uniform specification property. We give some basic properties these systems have and give an assumption for the gap functions to ensure the systems have the following five properties: CO-measures are dense in invariant measures; for every non-empty compact connected subset of invariant measures, its saturated set is dense in the total space; ergodic measures are residual in invariant measures; ergodic measures are connected; and entropy-dense. In addition, we will give examples to show the assumption is optimal.
We define a notion of substitution on colored binary trees that we call substreetution. We show that a point fixed by a substreetution may (or not) be almost periodic, and thus the closure of the orbit under the $\mathbb {F}_{2}^{+}$-action may (or not) be minimal. We study one special example: we show that it belongs to the minimal case and that the number of preimages in the minimal set increases just exponentially fast, whereas it could be expected a super-exponential growth. We also give examples of periodic trees without invariant measures on their orbit. We use our construction to get quasi-periodic colored tilings of the hyperbolic disk.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
Based on previous work of the authors, to any S-adic development of a subshift X a ‘directive sequence’ of commutative diagrams is associated, which consists at every level $n \geq 0$ of the measure cone and the letter frequency cone of the level subshift $X_n$ associated canonically to the given S-adic development. The issuing rich picture enables one to deduce results about X with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer $d \geq 2$, an S-adic development of a minimal, aperiodic, uniquely ergodic subshift X, where all level alphabets $\mathcal A_n$ have cardinality $d,$ while none of the $d-2$ bottom level morphisms is recognizable in its level subshift $X_n \subseteq \mathcal A_n^{\mathbb {Z}}$.
For $\mathscr {B} \subseteq \mathbb {N} $, the $ \mathscr {B} $-free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $, have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$-free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.
We generalize to a broader class of decoupled measures a result of Ziv and Merhav on universal estimation of the specific cross (or relative) entropy, originally for a pair of multilevel Markov measures. Our generalization focuses on abstract decoupling conditions and covers pairs of suitably regular g-measures and pairs of equilibrium measures arising from the “small space of interactions” in mathematical statistical mechanics.
We obtain the following embedding theorem for symbolic dynamical systems. Let G be a countable amenable group with the comparison property. Let X be a strongly aperiodic subshift over G. Let Y be a strongly irreducible shift of finite type over G that has no global period, meaning that the shift action is faithful on Y. If the topological entropy of X is strictly less than that of Y and Y contains at least one factor of X, then X embeds into Y. This result partially extends the classical result of Krieger when $G = \mathbb {Z}$ and the results of Lightwood when $G = \mathbb {Z}^d$ for $d \geq 2$. The proof relies on recent developments in the theory of tilings and quasi-tilings of amenable groups.
Let G be a countable residually finite group (for instance, ${\mathbb F}_2$) and let $\overleftarrow {G}$ be a totally disconnected metric compactification of G equipped with the action of G by left multiplication. For every $r\geq 1$, we construct a Toeplitz G-subshift $(X,\sigma ,G)$, which is an almost one-to-one extension of $\overleftarrow {G}$, having r ergodic measures $\nu _1, \ldots ,\nu _r$ such that for every $1\leq i\leq r$, the measure-theoretic dynamical system $(X,\sigma ,G,\nu _i)$ is isomorphic to $\overleftarrow {G}$ endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.
In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of free extension shifts on a group G, which takes a shift on a subgroup H of G, and naturally extends it to a shift on all of G.
We find sufficient conditions for bounded density shifts to have a unique measure of maximal entropy. We also prove that every measure of maximal entropy of a bounded density shift is fully supported. As a consequence of this, we obtain that bounded density shifts are surjunctive.
Let G be a group and let V be an algebraic variety over an algebraically closed field K. Let A denote the set of K-points of V. We introduce algebraic sofic subshifts ${\Sigma \subset A^G}$ and study endomorphisms $\tau \colon \Sigma \to \Sigma $. We generalize several results for dynamical invariant sets and nilpotency of $\tau $ that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that $\tau $ is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover G is infinite, finitely generated and $\Sigma $ is topologically mixing, we show that $\tau $ is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.
We introduce the notions of returns and well-aligned sets for closed relations on compact metric spaces and then use them to obtain non-trivial sufficient conditions for such a relation to have non-zero entropy. In addition, we give a characterization of finite relations with non-zero entropy in terms of Li–Yorke and DC2 chaos.
Bratteli–Vershik models of compact, invertible zero-dimensional systems have been well studied. We take up such a study for polygonal billiards on the hyperbolic plane, thus considering these models beyond zero-dimensions. We describe the associated Bratteli models and show that these billiard dynamics can be described by Vershik maps.