We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by $T(x,y) = (E (x), C(x,y))$, where E is an expanding map of $\mathbb {T}^u$ and C is a contracting map on each fiber. If $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<r-(({u+d})/{2}+1)}$, $r \geq 2$, and T satisfies a transversality condition between overlaps of iterates of T (a condition which we prove to be $C^r$-generic under mild assumptions), then the SRB measure $\mu _T$ of T is absolutely continuous and its density $h_T$ belongs to the Sobolev space $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$. When $s> {u}/{2}$, it is also valid that the density $h_T$ is differentiable with respect to T. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.
We study equilibrium states for a class of non-uniformly expanding skew products, and show how a family of fiberwise transfer operators can be used to define the conditional measures along fibers of the product. We prove that the pushforward of the equilibrium state onto the base of the product is itself an equilibrium state for a Hölder potential defined via these fiberwise transfer operators.
We study conjugacy classes of germs of nonflat diffeomorphisms of the real line fixing the origin. Based on the work of Takens and Yoccoz, we establish results that are sharp in terms of differentiability classes and order of tangency to the identity. The core of all of this lies in the invariance of residues under low-regular conjugacies. This may be seen as an extension of the fact (also proved in this article) that the value of the Schwarzian derivative at the origin for germs of $C^3$ parabolic diffeomorphisms is invariant under $C^2$ parabolic conjugacy, though it may vary arbitrarily under parabolic $C^1$ conjugacy.
Katok [Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci.51 (1980), 137–173] conjectured that every $C^{2}$ diffeomorphism f on a Riemannian manifold has the intermediate entropy property, that is, for any constant $c \in [0, h_{\mathrm {top}}(f))$, there exists an ergodic measure $\mu $ of f satisfying $h_{\mu }(f)=c$. In this paper, we obtain a conditional intermediate metric entropy property and two conditional intermediate Birkhoff average properties for basic sets of flows that characterize the refined roles of ergodic measures in the invariant ones. In this process, we establish a ‘multi-horseshoe’ entropy-dense property and use it to get the goal combined with conditional variational principles. We also obtain the same result for singular hyperbolic attractors.
We prove that under restrictions on the fiber, any fibered partially hyperbolic system over a nilmanifold is leaf conjugate to a smooth model that is isometric on the fibers and descends to a hyperbolic nilmanifold automorphism on the base. One ingredient is a result of independent interest generalizing a result of Hiraide: an Anosov homeomorphism of a nilmanifold is topologically conjugate to a hyperbolic nilmanifold automorphism.
For every $r\in \mathbb {N}_{\geq 2}\cup \{\infty \}$, we prove a $C^r$-orbit connecting lemma for dynamically coherent and plaque expansive partially hyperbolic diffeomorphisms with one-dimensional orientation preserving center bundle. To be precise, for such a diffeomorphism f, if a point y is chain attainable from x through pseudo-orbits, then for any neighborhood U of x and any neighborhood V of y, there exist true orbits from U to V by arbitrarily $C^r$-small perturbations. As a consequence, we prove that for $C^r$-generic diffeomorphisms in this class, periodic points are dense in the chain recurrent set, and chain transitivity implies transitivity.
While on the one hand, chaotic dynamical systems can be predicted for all time given exact knowledge of an initial state, they are also in many cases rapidly mixing, meaning that smooth probabilistic information (quantified by measures) on the system’s state has negligible value for predicting the long-term future. However, an understanding of the long-term predictive value of intermediate kinds of probabilistic information is necessary in various physical problems, and largely remains lacking. Of particular interest in data assimilation and linear response theory are the conditional measures of the Sinai–Ruelle–Bowen (SRB) measure on zero sets of general smooth functions of the phase space. In this paper we give rigorous and numerical evidence that such measures generically converge back under the dynamics to the full SRB measures, exponentially quickly. We call this property conditional mixing. While conditional mixing typically cannot be proven from standard transfer operator theory, we will prove that conditional mixing holds in a class of generalized baker’s maps, and demonstrate it numerically in some non-Markovian piecewise hyperbolic maps. Conditional mixing provides a natural limit on the effectiveness of long-term forecasting of chaotic systems via partial observations, and appears key to proving the existence of linear response outside the setting of smooth uniform hyperbolicity.
The purpose of this study is two-fold. First, the Hausdorff dimension formula of the multidimensional multiplicative subshift (MMS) in $\mathbb {N}^d$ is presented. This extends the earlier work of Kenyon et al [Hausdorff dimension for fractals invariant under multiplicative integers. Ergod. Th. & Dynam. Sys.32(5) (2012), 1567–1584] from $\mathbb {N}$ to $\mathbb {N}^d$. In addition, the preceding work of the Minkowski dimension of the MMS in $\mathbb {N}^d$ is applied to show that their Hausdorff dimension is strictly less than the Minkowski dimension. Second, the same technique allows us to investigate the multifractal analysis of multiple ergodic average in $\mathbb {N}^d$. Precisely, we extend the result of Fan et al, [Multifractal analysis of some multiple ergodic averages. Adv. Math.295 (2016), 271–333] of the multifractal analysis of multiple ergodic average from $\mathbb {N}$ to $\mathbb {N}^d$.
Several authors have shown that Kusuoka’s measure κ on fractals is a scalar Gibbs measure; in particular, it maximizes a pressure. There is also a different approach, in which one defines a matrix-valued Gibbs measure µ, which induces both Kusuoka’s measure κ and Kusuoka’s bilinear form. In the first part of the paper, we show that one can define a ‘pressure’ for matrix-valued measures; this pressure is maximized by µ. In the second part, we use the matrix-valued Gibbs measure µ to count periodic orbits on fractals, weighted by their Lyapounov exponents.
Niven’s theorem asserts that $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap \mathbb {Q}=\{0,\pm 1,\pm 1/2\}.$ In this paper, we use elementary techniques and results from arithmetic dynamics to obtain an algorithm for classifying all values in the set $\{\cos (r\pi ) \mid r\in \mathbb {Q}\}\cap K$, where K is an arbitrary number field.
Stability is among the most important concepts in dynamical systems. Local stability is well-studied, whereas determining the ‘global stability’ of a nonlinear system is very challenging. Over the last few decades, many different ideas have been developed to address this issue, primarily driven by concrete applications. In particular, several disciplines suggested a web of concepts under the headline ‘resilience’. Unfortunately, there are many different variants and explanations of resilience, and often, the definitions are left relatively vague, sometimes even deliberately. Yet, to allow for a structural development of a mathematical theory of resilience that can be used across different areas, one has to ensure precise starting definitions and provide a mathematical comparison of different resilience measures. In this work, we provide a systematic review of the most relevant indicators of resilience in the context of continuous dynamical systems, grouped according to their mathematical features. The indicators are also generalised to be applicable to any attractor. These steps are important to ensure a more reliable, quantitatively comparable and reproducible study of resilience in dynamical systems. Furthermore, we also develop a new concept of resilience against certain nonautonomous perturbations to demonstrate how one can naturally extend our framework. All the indicators are finally compared via the analysis of a classic scalar model from population dynamics to show that direct quantitative application-based comparisons are an immediate consequence of a detailed mathematical analysis.
In this work, we explore the dynamical implications of a spectral sequence analysis of a filtered chain complex associated to a non-singular Morse–Smale (NMS) flow $\varphi $ on a closed orientable $3$-manifold $M^3$ with no heteroclinic trajectories connecting saddle periodic orbits. We introduce the novel concepts of cancellations and reductions of pairs of periodic orbits based on Franks’ morsification and Smale’s cancellation theorems. The main goal is to establish an algebraic-dynamical correspondence between the unfolding of this spectral sequence associated to $\varphi $ and a family of flows obtained by cancelling and reducing pairs of periodic orbits of $\varphi $ on $M^3$. This correspondence is achieved through a spectral sequence sweeping algorithm (SSSA), which determines the order in which these cancellations and reductions of periodic orbits occur, producing a family of NMS flows that reaches a core flow when the spectral sequence converges.
In this paper, we prove the continuity of iteration operators $\mathcal {J}_n$ on the space of all continuous self-maps of a locally compact Hausdorff space X and generally discuss dynamical behaviors of them. We characterize their fixed points and periodic points for $X=\mathbb {R}$ and the unit circle $S^1$. Then we indicate that all orbits of $\mathcal {J}_n$ are bounded; however, we prove that for $X=\mathbb {R}$ and $S^1$, every fixed point of $\mathcal {J}_n$ which is non-constant and equals the identity on its range is not Lyapunov stable. The boundedness and the instability exhibit the complexity of the system, but we show that the complicated behavior is not Devaney chaotic. We give a sufficient condition to classify the systems generated by iteration operators up to topological conjugacy.
Let $\alpha $ be a $C^{\infty }$ volume-preserving action on a closed n-manifold M by a lattice $\Gamma $ in $\mathrm {SL}(n,\mathbb {R})$, $n\ge 3$. Assume that there is an element $\gamma \in \Gamma $ such that $\alpha (\gamma )$ admits a dominated splitting. We prove that the manifold M is diffeomorphic to the torus ${{\mathbb T}^{n}={\mathbb R}^{n}/{\mathbb Z}^{n}}$ and $\alpha $ is smoothly conjugate to an affine action. Anosov diffeomorphisms and partial hyperbolic diffeomorphisms admit a dominated splitting. We obtained a topological global rigidity when $\alpha $ is $C^{1}$. We also prove similar theorems for actions on $2n$-manifolds by lattices in $\textrm {Sp}(2n,{\mathbb R})$ with $n\ge 2$ and $\mathrm {SO}(n,n)$ with $n\ge 5$.
We give an example of a path-wise connected open set of $C^{\infty }$ partially hyperbolic endomorphisms on the $2$-torus, on which the (unique) Sinai–Ruelle–Bowen (SRB) measure exists for each system and varies smoothly depending on the system, while the sign of its central Lyapunov exponent changes.
For a non-conformal repeller $\Lambda $ of a $C^{1+\alpha }$ map f preserving an ergodic measure $\mu $ of positive entropy, this paper shows that the Lyapunov dimension of $\mu $ can be approximated gradually by the Carathéodory singular dimension of a sequence of horseshoes. For a $C^{1+\alpha }$ diffeomorphism f preserving a hyperbolic ergodic measure $\mu $ of positive entropy, if $(f, \mu )$ has only two Lyapunov exponents $\unicode{x3bb} _u(\mu )>0>\unicode{x3bb} _s(\mu )$, then the Hausdorff or lower box or upper box dimension of $\mu $ can be approximated by the corresponding dimension of the horseshoes $\{\Lambda _n\}$. The same statement holds true if f is a $C^1$ diffeomorphism with a dominated Oseledet’s splitting with respect to $\mu $.
In this paper, we address the issue of synchronization of coupled systems, introducing concepts of local and global synchronization for a class of systems that extend the model of coupled map lattices. A criterion for local synchronization is given; numerical experiments are exhibited to illustrate the criteria and also to raise some questions in the end of the text.
The exponential ordering is exploited in the context of nonautonomous delay systems, inducing monotone skew-product semiflows under less restrictive conditions than usual. Some dynamical concepts linked to the order, such as semiequilibria, are considered for the exponential ordering, with implications for the determination of the presence of uniform persistence or the existence of global attractors. Also, some important conclusions on the long-term dynamics and attraction are obtained for monotone and sublinear delay systems for this ordering. The results are then applied to almost periodic Nicholson systems and new conditions are given for the existence of a unique almost periodic positive solution which asymptotically attracts every other positive solution.
In the context of discrete nonautonomous dynamics, we prove that the homeomorphisms in the linearization theorem are $C^2$ diffeomorphisms. In contrast to other related works, our result does not involve non-resonance conditions or spectral gaps. Our approach is based on the interlacing of the properties of nonautonomous hyperbolicity of the linear part, and boundedness and Lipschitzness of the nonlinearities. Moreover, we propose a functional approach to find conditions for regularity of arbitrary degree.