To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider compact sets which are invariant and partially hyperbolic under the dynamics of a diffeomorphism of a manifold. We prove that such a set $K$ is contained in a locally invariant center submanifold if and only if each strong stable and strong unstable leaf intersects $K$ at exactly one point.
We consider systems of quasi-periodic linear differential equations associated to a‘resonant’ frequency vector ${\it\omega}$, namely, a vector whose coordinates are not linearly independent over $\mathbb{Z}$. We give sufficient conditions that ensure that a small analytic perturbation of a constant system is analytically conjugate to a ‘resonant cocycle’. We also apply our results to the non-resonant case: we obtain sufficient conditions for reducibility.
Let ${\it\gamma}$ be a hyperbolic closed orbit of a $C^{1}$ vector field $X$ on a compact $C^{\infty }$ manifold $M$ and let $H_{X}({\it\gamma})$ be the homoclinic class of $X$ containing ${\it\gamma}$. In this paper, we prove that if a $C^{1}$-persistently expansive homoclinic class $H_{X}({\it\gamma})$ has the shadowing property, then $H_{X}({\it\gamma})$ is hyperbolic.
We show that the space of actions of every finitely generated, nilpotent group by $C^1$ orientation-preserving diffeomorphisms of the circle is path-connected. This is done via a general result that allows any given action on the interval to be connected to the trivial one by a continuous path of topological conjugates.
Since the foundational work of Chenciner and Montgomery in 2000 there has been a great deal of interest in choreographic solutions of the $n$-body problem: periodic motions where the $n$ bodies all follow one another at regular intervals along a closed path. The principal approach combines variational methods with symmetry properties. In this paper, we give a systematic treatment of the symmetry aspect. In the first part, we classify all possible symmetry groups of planar $n$-body collision-free choreographies. These symmetry groups fall into two infinite families and, if $n$ is odd, three exceptional groups. In the second part, we develop the equivariant fundamental group and use it to determine the topology of the space of loops with a given symmetry, which we show is related to certain cosets of the pure braid group in the full braid group, and to centralizers of elements of the corresponding coset. In particular, we refine the symmetry classification by classifying the connected components of the set of loops with any given symmetry. This leads to the existence of many new choreographies in $n$-body systems governed by a strong force potential.
Consider a pseudogroup on $( \mathbb{C} , 0)$ generated by two local diffeomorphisms having analytic conjugacy classes a priori fixed in $\mathrm{Diff} \hspace{0.167em} ( \mathbb{C} , 0)$. We show that a generic pseudogroup as above is such that every point has a (possibly trivial) cyclic stabilizer. It also follows that these generic groups possess infinitely many hyperbolic orbits. This result possesses several applications to the topology of leaves of foliations, and we shall explicitly describe the case of nilpotent foliations associated to Arnold’s singularities of type ${A}^{2n+ 1} $.
We show that generically a pseudogroup generated by holomorphic diffeomorphisms defined about $0\in \mathbb{C} $ is free in the sense of pseudogroups even if the class of conjugacy of the generators is fixed. This result has a number of consequences on the topology of leaves for a (singular) holomorphic foliation defined on a neighborhood of an invariant curve. In particular, in the classical and simplest case arising from local nilpotent foliations possessing a unique separatrix which is given by a cusp of the form $\{ {y}^{2} - {x}^{2n+ 1} = 0\} $, our results allow us to settle the problem of showing that a generic foliation possesses only countably many non-simply connected leaves.
We investigate the topological and metric properties of attractors of an iterated function system (IFS) whose functions may not be contractive. We focus, in particular, on invertible IFSs of finitely many maps on a compact metric space. We rely on ideas of Kieninger [Iterated Function Systems on Compact Hausdorff Spaces (Shaker, Aachen, 2002)] and McGehee and Wiandt [‘Conley decomposition for closed relations’, Differ. Equ. Appl.12 (2006), 1–47] restricted to what is, in many ways, a simpler setting, but focused on a special type of attractor, namely point-fibred invariant sets. This allows us to give short proofs of some of the key ideas.
For impulsive differential equations, we construct topological conjugacies between linear and nonlinear perturbations of non-uniform exponential dichotomies. In the case of linear perturbations, the topological conjugacies are constructed in a more or less explicit manner. In the nonlinear case, we obtain an appropriate version of the Grobman–Hartman Theorem for impulsive equations, with a simple and direct proof that involves no discretization of the dynamics.
We obtain an asymptotic formula for the number of pairs of closed orbits of a weak-mixing transitive Anosov flow whose homology classes have a fixed difference.
Lattès and Kummer examples are rational transformations of compact kähler manifolds that are covered by an affine transformation of a compact torus. We present a few ergodic characteristic properties of these examples. The main results concern the case of surfaces.
The concept of loosely Markov dynamical systems is introduced. We show that for these systems the recurrence rates and pointwise dimensions coincide. The systems generated by hyperbolic exponential maps, arbitrary rational functions of the Riemann sphere, and measurable dynamical systems generated by infinite conformal iterated function systems are all checked to be loosely Markov.
The Hopf bifurcation and homoclinic bifurcation of the quintic Hamiltonian system is analyzed under quintic perturbations by using unfolding theory in this paper. We show that a quintic system can have at least 29 limit cycles.