We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain an asymptotic formula for the number of pairs of closed orbits of a weak-mixing transitive Anosov flow whose homology classes have a fixed difference.
Lattès and Kummer examples are rational transformations of compact kähler manifolds that are covered by an affine transformation of a compact torus. We present a few ergodic characteristic properties of these examples. The main results concern the case of surfaces.
The concept of loosely Markov dynamical systems is introduced. We show that for these systems the recurrence rates and pointwise dimensions coincide. The systems generated by hyperbolic exponential maps, arbitrary rational functions of the Riemann sphere, and measurable dynamical systems generated by infinite conformal iterated function systems are all checked to be loosely Markov.
The Hopf bifurcation and homoclinic bifurcation of the quintic Hamiltonian system is analyzed under quintic perturbations by using unfolding theory in this paper. We show that a quintic system can have at least 29 limit cycles.