To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There is much research on the dynamical complexity on irregular sets and level sets of ergodic average from the perspective of density in base space, the Hausdorff dimension, Lebesgue positive measure, positive or full topological entropy (and topological pressure), etc. However, this is not the case from the viewpoint of chaos. There are many results on the relationship of positive topological entropy and various chaos. However, positive topological entropy does not imply a strong version of chaos, called DC1. Therefore, it is non-trivial to study DC1 on irregular sets and level sets. In this paper, we will show that, for dynamical systems with specification properties, there exist uncountable DC1-scrambled subsets in irregular sets and level sets. Meanwhile, we prove that several recurrent level sets of points with different recurrent frequency have uncountable DC1-scrambled subsets. The major argument in proving the above results is that there exists uncountable DC1-scrambled subsets in saturated sets.
We prove a Tits alternative for topological full groups of minimal actions of finitely generated groups. On the one hand, we show that topological full groups of minimal actions of virtually cyclic groups are amenable. By doing so, we generalize the result of Juschenko and Monod for $\mathbf{Z}$-actions. On the other hand, when a finitely generated group $G$ is not virtually cyclic, then we construct a minimal free action of $G$ on a Cantor space such that the topological full group contains a non-abelian free group.
It is proved that a symplectic twist map of the cotangent bundle $T^{\ast }\mathbb{T}^{d}$ of the $d$-dimensional torus that is without conjugate points is $C^{0}$-integrable, that is $T^{\ast }\mathbb{T}^{d}$ is foliated by a family of invariant $C^{0}$ Lagrangian graphs.
An isotopic to the identity map of the 2-torus, that has zero rotation vector with respect to an invariant ergodic probability measure, has a fixed point by a theorem of Franks. We give a version of this result for nilpotent subgroups of isotopic to the identity diffeomorphisms of the 2-torus. In such a context we guarantee the existence of global fixed points for nilpotent groups of irrotational diffeomorphisms. In particular, we show that the derived group of a nilpotent group of isotopic to the identity diffeomorphisms of the 2-torus has a global fixed point.
We introduce and study skew product Smale endomorphisms over finitely irreducible shifts with countable alphabets. This case is different from the one with finite alphabets and we develop new methods. In the conformal context we prove that almost all conditional measures of equilibrium states of summable Hölder continuous potentials are exact dimensional and their dimension is equal to the ratio of (global) entropy and Lyapunov exponent. We show that the exact dimensionality of conditional measures on fibers implies global exact dimensionality of the original measure. We then study equilibrium states for skew products over expanding Markov–Rényi transformations and settle the question of exact dimensionality of such measures. We apply our results to skew products over the continued fraction transformation. This allows us to extend and improve the Doeblin–Lenstra conjecture on Diophantine approximation coefficients to a larger class of measures and irrational numbers.
We study the differentiability properties of the topological equivalence between a uniformly asymptotically stable linear nonautonomous system and a perturbed system with suitable nonlinearities. For this purpose, we construct a homeomorphism inspired in the Palmer's one restricted to the positive half line, studying additional continuity properties and providing sufficient conditions ensuring its Cr–smoothness.
In this article, we consider a twisted partial action $\unicode[STIX]{x1D6FC}$ of a group $G$ on an associative ring $R$ and its associated partial crossed product $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$. We provide necessary and sufficient conditions for the commutativity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ when the twisted partial action $\unicode[STIX]{x1D6FC}$ is unital. Moreover, we study necessary and sufficient conditions for the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$ in the following cases: (i) $G$ is abelian; (ii) $R$ is maximal commutative in $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$; (iii) $C_{R\ast _{\unicode[STIX]{x1D6FC}}^{w}G}(Z(R))$ is simple; (iv) $G$ is hypercentral. When $R=C_{0}(X)$ is the algebra of continuous functions defined on a locally compact and Hausdorff space $X$, with complex values that vanish at infinity, and $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ is the associated partial skew group ring of a partial action $\unicode[STIX]{x1D6FC}$ of a topological group $G$ on $C_{0}(X)$, we study the simplicity of $C_{0}(X)\ast _{\unicode[STIX]{x1D6FC}}G$ by using topological properties of $X$ and the results about the simplicity of $R\ast _{\unicode[STIX]{x1D6FC}}^{w}G$.
We show that the stable and unstable sets of non-uniformly hyperbolic horseshoes arising in some heteroclinic bifurcations of surface diffeomorphisms have the value conjectured in a previous work by the second and third authors of the present paper. Our results apply to first heteroclinic bifurcations associated with horseshoes with Hausdorff dimension ${<}22/21$ of conservative surface diffeomorphisms.
For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.
For differentiable dynamical systems with dominated splittings, we give upper estimates on the measure-theoretic tail entropy in terms of Lyapunov exponents. As our primary application, we verify the upper semi-continuity of metric entropy in various settings with domination.
We consider a class of skew product maps of interval diffeomorphisms over the doubling map. The interval maps fix the end points of the interval. It is assumed that the system has zero fiber Lyapunov exponent at one endpoint and zero or positive fiber Lyapunov exponent at the other endpoint. We prove the appearance of on–off intermittency. This is done using the equivalent description of chaotic walks: random walks driven by the doubling map. The analysis further relies on approximating the chaotic walks by Markov random walks, that are constructed using Markov partitions for the doubling map.
We study a rich family of robustly non-hyperbolic transitive diffeomorphisms and we show that each ergodic measure is approached by hyperbolic sets in weak$\ast$-topology and in entropy. For hyperbolic ergodic measures, it is a classical result of A. Katok. The novelty here is to deal with non-hyperbolic ergodic measures. As a consequence, we obtain the continuity of topological entropy.
Let $f$ be a holomorphic endomorphism of $\mathbb{P}^{2}$ of degree $d\geq 2$. We estimate the local directional dimensions of closed positive currents $S$ with respect to ergodic dilating measures $\unicode[STIX]{x1D708}$. We infer several applications. The first one is an upper bound for the lower pointwise dimension of the equilibrium measure, towards a Binder–DeMarco’s formula for this dimension. The second one shows that every current $S$ containing a measure of entropy $h_{\unicode[STIX]{x1D708}}>\log d$ has a directional dimension ${>}2$, which answers a question of de Thélin–Vigny in a directional way. The last one estimates the dimensions of the Green current of Dujardin’s semi-extremal endomorphisms.
Let $\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$ and $\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$, where $p_{n}/q_{n}$ is the continued fraction approximation to $\unicode[STIX]{x1D6FC}$. Let $(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$ be the almost Mathieu operator on $\ell ^{2}(\mathbb{Z})$, where $\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$. Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170(1) (2009), 303–342] conjectured that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$, $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$. In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$, $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$.
In this paper we prove that the set of translation structures for which the corresponding vertical translation flows are disjoint with its inverse contains a $G_{\unicode[STIX]{x1D6FF}}$-dense subset in every non-hyperelliptic connected component of the moduli space ${\mathcal{M}}$. This is in contrast to hyperelliptic case, where for every translation structure the associated vertical flow is reversible, i.e., it is isomorphic to its inverse by an involution. To prove the main result, we study limits of the off-diagonal 3-joinings of special representations of vertical translation flows. Moreover, we construct a locally defined continuous embedding of the moduli space into the space of measure-preserving flows to obtain the $G_{\unicode[STIX]{x1D6FF}}$-condition. Moreover, as a by-product we get that in every non-hyperelliptic connected component of the moduli space there is a dense subset of translation structures whose vertical flow is reversible.
In this paper we consider $C^{\infty }$-generic families of area-preserving diffeomorphisms of the torus homotopic to the identity and their rotation sets. Let $f_{t}:\text{T}^{2}\rightarrow \text{T}^{2}$ be such a family, $\widetilde{f}_{t}:\mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$ be a fixed family of lifts and $\unicode[STIX]{x1D70C}(\widetilde{f}_{t})$ be their rotation sets, which we assume to have interior for $t$ in a certain open interval $I$. We also assume that some rational point $(p/q,l/q)\in \unicode[STIX]{x2202}\unicode[STIX]{x1D70C}(\widetilde{f}_{\overline{t}})$ for a certain parameter $\overline{t}\in I$, and we want to understand the consequences of the following hypothesis: for all $t>\overline{t}$, $t\in I$, $(p/q,l/q)\in \text{int}(\unicode[STIX]{x1D70C}(\widetilde{f}_{t}))$. Under these very natural assumptions, we prove that there exists a $f_{\overline{t}}^{q}$-fixed hyperbolic saddle $P_{\overline{t}}$ such that its rotation vector is $(p/q,l/q)$. We also prove that there exists a sequence $t_{i}>\overline{t}$, $t_{i}\rightarrow \overline{t}$, such that if $P_{t}$ is the continuation of $P_{\overline{t}}$ with the parameter, then $W^{u}(\widetilde{P}_{t_{i}})$ (the unstable manifold) has quadratic tangencies with $W^{s}(\widetilde{P}_{t_{i}})+(c,d)$ (the stable manifold translated by $(c,d)$), where $\widetilde{P}_{t_{i}}$ is any lift of $P_{t_{i}}$ to the plane. In other words, $\widetilde{P}_{t_{i}}$ is a fixed point for $(\widetilde{f}_{t_{i}})^{q}-(p,l)$, and $(c,d)\neq (0,0)$ are certain integer vectors such that $W^{u}(\widetilde{P}_{\overline{t}})$ do not intersect $W^{s}(\widetilde{P}_{\overline{t}})+(c,d)$, and these tangencies become transverse as $t$ increases. We also prove that, for $t>\overline{t}$, $W^{u}(\widetilde{P}_{t})$ has transverse intersections with $W^{s}(\widetilde{P}_{t})+(a,b)$, for all integer vectors $(a,b)$, and thus one may consider that the tangencies above are associated to the birth of the heteroclinic intersections in the plane that do not exist for $t\leq \overline{t}$.
Let $G$ be a group acting properly by isometries and with a strongly contracting element on a geodesic metric space. Let $N$ be an infinite normal subgroup of $G$ and let $\unicode[STIX]{x1D6FF}_{N}$ and $\unicode[STIX]{x1D6FF}_{G}$ be the growth rates of $N$ and $G$ with respect to the pseudo-metric induced by the action. We prove that if $G$ has purely exponential growth with respect to the pseudo-metric, then $\unicode[STIX]{x1D6FF}_{N}/\unicode[STIX]{x1D6FF}_{G}>1/2$. Our result applies to suitable actions of hyperbolic groups, right-angled Artin groups and other CAT(0) groups, mapping class groups, snowflake groups, small cancellation groups, etc. This extends Grigorchuk’s original result on free groups with respect to a word metric and a recent result of Matsuzaki, Yabuki and Jaerisch on groups acting on hyperbolic spaces to a much wider class of groups acting on spaces that are not necessarily hyperbolic.
A classic result due to Furstenberg is the strict ergodicity of the horocycle flow for a compact hyperbolic surface. Strict ergodicity is unique ergodicity with respect to a measure of full support, and therefore it implies minimality. The horocycle flow has been previously studied on minimal foliations by hyperbolic surfaces on closed manifolds, where it is known not to be minimal in general. In this paper, we prove that for the special case of Riemannian foliations, strict ergodicity of the horocycle flow still holds. This, in particular, proves that this flow is minimal, which establishes a conjecture proposed by Matsumoto. The main tool is a theorem due to Coudène, which he presented as an alternative proof for the surface case. It applies to two continuous flows defining a measure-preserving action of the affine group of the line on a compact metric space, precisely matching the foliated setting. In addition, we briefly discuss the application of Coudène’s theorem to other kinds of foliations.
For a class of competitive maps there is an invariant one-codimensional manifold (the carrying simplex) attracting all non-trivial orbits. In this paper it is shown that its convexity implies that it is a $C^{1}$ submanifold-with-corners, neatly embedded in the non-negative orthant. The proof uses the characterization of neat embedding in terms of inequalities between Lyapunov exponents for ergodic invariant measures supported on the boundary of the carrying simplex.
We contribute to the thermodynamic formalism of partially hyperbolic attractors for local diffeomorphisms admitting an invariant stable bundle and a positively invariant cone field with non-uniform cone expansion at a positive Lebesgue measure set of points. These include the case of attractors for Axiom A endomorphisms and partially hyperbolic endomorphisms derived from Anosov. We prove these attractors have finitely many SRB measures, that these are hyperbolic, and that the SRB measure is unique provided the dynamics is transitive. Moreover, we show that the SRB measures are statistically stable (in the weak$^{\ast }$ topology) and that their entropy varies continuously with respect to the local diffeomorphism.