To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let f be a smooth symplectic diffeomorphism of ${\mathbb R}^2$ admitting a (non-split) separatrix associated to a hyperbolic fixed point. We prove that if f is a perturbation of the time-1 map of a symplectic autonomous vector field, this separatrix is accumulated by a positive measure set of invariant circles. However, we provide examples of smooth symplectic diffeomorphisms with a Lyapunov unstable non-split separatrix that are not accumulated by invariant circles.
We set out some general criteria to prove the K-property, refining the assumptions used in an earlier paper for the flow case, and introducing the analogous discrete-time result. We also introduce one-sided $\lambda $-decompositions, as well as multiple techniques for checking the pressure gap required to show the K-property. We apply our results to the family of Mañé diffeomorphisms and the Katok map. Our argument builds on the orbit decomposition theory of Climenhaga and Thompson.
The aim of this paper is to establish exponential mixing of frame flows for convex cocompact hyperbolic manifolds of arbitrary dimension with respect to the Bowen–Margulis–Sullivan measure. Some immediate applications include an asymptotic formula for matrix coefficients with an exponential error term as well as the exponential equidistribution of holonomy of closed geodesics. The main technical result is a spectral bound on transfer operators twisted by holonomy, which we obtain by building on Dolgopyat's method.
In this paper we show that generic continuous Lebesgue measure-preserving circle maps have the s-limit shadowing property. In addition, we obtain that s-limit shadowing is a generic property also for continuous circle maps. In particular, this implies that classical shadowing, periodic shadowing and limit shadowing are generic in these two settings as well.
We prove by methods of harmonic analysis a result on the existence of solutions for twisted cohomological equations on translation surfaces with loss of derivatives at most $3+$ in Sobolev spaces. As a consequence we prove that product translation flows on (three-dimensional) translation manifolds which are products of a (higher-genus) translation surface with a (flat) circle are stable in the sense of A. Katok. In turn, our result on product flows implies a stability result of time-$\tau $ maps of translation flows on translation surfaces.
We outline the flexibility program in smooth dynamics, focusing on flexibility of Lyapunov exponents for volume-preserving diffeomorphisms. We prove flexibility results for Anosov diffeomorphisms admitting dominated splittings into one-dimensional bundles.
Under a suitable bunching condition, we establish that stable holonomies inside center-stable manifolds for $C^{1+\beta }$ diffeomorphisms are uniformly bi-Lipschitz and, in fact, $C^{1+\mathrm {H}\ddot{\rm o}\mathrm {lder}}$. This verifies the ergodicity of suitably center-bunched, essentially accessible, partially hyperbolic $C^{1+\beta }$ diffeomorphisms and verifies that the Ledrappier–Young entropy formula holds for $C^{1+\beta }$ diffeomorphisms of compact manifolds.
Two given orbits of a minimal circle homeomorphism f are said to be geometrically equivalent if there exists a quasisymmetric circle homeomorphism identifying both orbits and commuting with f. By a well-known theorem due to Herman and Yoccoz, if f is a smooth diffeomorphism with Diophantine rotation number, then any two orbits are geometrically equivalent. It follows from the a priori bounds of Herman and Świątek, that the same holds if f is a critical circle map with rotation number of bounded type. By contrast, we prove in the present paper that if f is a critical circle map whose rotation number belongs to a certain full Lebesgue measure set in $(0,1)$, then the number of equivalence classes is uncountable (Theorem 1.1). The proof of this result relies on the ergodicity of a two-dimensional skew product over the Gauss map. As a by-product of our techniques, we construct topological conjugacies between multicritical circle maps which are not quasisymmetric, and we show that this phenomenon is abundant, both from the topological and measure-theoretical viewpoints (Theorems 1.6 and 1.8).
We construct the complete set of orders of growth and define on it the generalized entropy of a dynamical system. With this object, we provide a framework wherein we can study the separation of orbits of a map beyond the scope of exponential growth. We show that this construction is particularly useful for studying families of dynamical systems with vanishing entropy. Moreover, we see that the space of orders of growth in which orbits are separated is wilder than expected. We achieve this with different types of examples.
This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$. In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint, 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every $C^1$ IFS on ${\Bbb R}^d$ is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of $C^1$ IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of $C^1$ IFSs on ${\Bbb R}^d$.
We improve a recent construction of Andrés Navas to produce the first examples of $C^2$-undistorted diffeomorphisms of the interval that are $C^{1+\alpha }$-distorted (for every ${\alpha < 1}$). We do this via explicit computations due to the failure of an extension to class $C^{1+\alpha }$ of a classical lemma related to the work of Nancy Kopell.
We refine the recent local rigidity result for the marked length spectrum obtained by the first and third author in [GL19] and give an alternative proof using the geodesic stretch between two Anosov flows and some uniform estimate on the variance appearing in the central limit theorem for Anosov geodesic flows. In turn, we also introduce a new pressure metric on the space of isometry classes, which reduces to the Weil–Petersson metric in the case of Teichmüller space and is related to the works [BCLS15, MM08].
In this paper we prove a perturbative result for a class of ${\mathbb Z}^2$ actions on Heisenberg nilmanifolds that have Diophantine properties. Along the way we prove cohomological rigidity and obtain a tame splitting for the cohomology with coefficients in smooth vector fields for such actions.
We consider $C^{r}$-diffeomorphisms ($1 \leq r \leq +\infty$) of a compact smooth manifold having two pairs of hyperbolic periodic points of different indices which admit transverse heteroclinic points and are connected through a blender. We prove that, by giving an arbitrarily $C^{r}$-small perturbation near the periodic points, we can produce a periodic point for which the first return map in the center direction coincides with the identity map up to order $r$, provided the transverse heteroclinic points satisfy certain natural conditions involving higher derivatives of their transition maps in the center direction. As a consequence, we prove that $C^{r}$-generic diffeomorphisms in a small neighborhood of the diffeomorphism under consideration exhibit super-exponential growth of number of periodic points. We also give examples which show the necessity of the conditions we assume.
In this paper, we study the centralizer of a partially hyperbolic diffeomorphism on ${\mathbb T}^3$ which is homotopic to an Anosov automorphism, and we show that either its centralizer is virtually trivial or such diffeomorphism is smoothly conjugate to its linear part.
In this article we study physical measures for $\operatorname {C}^{1+\alpha }$ partially hyperbolic diffeomorphisms with a mostly expanding center. We show that every diffeomorphism with a mostly expanding center direction exhibits a geometrical-combinatorial structure, which we call skeleton, that determines the number, basins and supports of the physical measures. Furthermore, the skeleton allows us to describe how physical measures bifurcate as the diffeomorphism changes under $C^1$ topology.
Moreover, for each diffeomorphism with a mostly expanding center, there exists a $C^1$ neighbourhood, such that diffeomorphism among a $C^1$ residual subset of this neighbourhood admits finitely many physical measures, whose basins have full volume.
We also show that the physical measures for diffeomorphisms with a mostly expanding center satisfy exponential decay of correlation for any Hölder observes. In particular, we prove that every $C^2$, partially hyperbolic, accessible diffeomorphism with 1-dimensional center and nonvanishing center exponent has exponential decay of correlations for Hölder functions.
We show that fractal percolation sets in $\mathbb{R}^{d}$ almost surely intersect every hyperplane absolutely winning (HAW) set with full Hausdorff dimension. In particular, if $E\subset\mathbb{R}^{d}$ is a realisation of a fractal percolation process, then almost surely (conditioned on $E\neq\emptyset$), for every countable collection $\left(f_{i}\right)_{i\in\mathbb{N}}$ of $C^{1}$ diffeomorphisms of $\mathbb{R}^{d}$, $\dim_{H}\left(E\cap\left(\bigcap_{i\in\mathbb{N}}f_{i}\left(\text{BA}_{d}\right)\right)\right)=\dim_{H}\left(E\right)$, where $\text{BA}_{d}$ is the set of badly approximable vectors in $\mathbb{R}^{d}$. We show this by proving that E almost surely contains hyperplane diffuse subsets which are Ahlfors-regular with dimensions arbitrarily close to $\dim_{H}\left(E\right)$.
We achieve this by analysing Galton–Watson trees and showing that they almost surely contain appropriate subtrees whose projections to $\mathbb{R}^{d}$ yield the aforementioned subsets of E. This method allows us to obtain a more general result by projecting the Galton–Watson trees against any similarity IFS whose attractor is not contained in a single affine hyperplane. Thus our general result relates to a broader class of random fractals than fractal percolation.
We construct two planar homoeomorphisms $f$ and $g$ for which the origin is a globally asymptotically stable fixed point whereas for $f \circ g$ and $g \circ f$ the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by $f$ and $g$ where each of the maps appears with a certain probability. This planar construction is also extended to any dimension $>$2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.
In [4], Kifer, Peres and Weiss showed that the Bernoulli measures for the Gauss map T(x)=1/x mod 1 satisfy a ‘dimension gap’ meaning that for some c > 0, supp dim μp < 1– c, where μp denotes the (pushforward) Bernoulli measure for the countable probability vector p. In this paper we propose a new proof of the dimension gap. By using tools from thermodynamic formalism we show that the problem reduces to obtaining uniform lower bounds on the asymptotic variance of a class of potentials.