To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Furstenberg [Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory1 (1967), 1–49] calculated the Hausdorff and Minkowski dimensions of one-sided subshifts in terms of topological entropy. We generalize this to $\mathbb{Z}^{2}$-subshifts. Our generalization involves mean dimension theory. We calculate the metric mean dimension and the mean Hausdorff dimension of $\mathbb{Z}^{2}$-subshifts with respect to a subaction of $\mathbb{Z}$. The resulting formula is quite analogous to Furstenberg’s theorem. We also calculate the rate distortion dimension of $\mathbb{Z}^{2}$-subshifts in terms of Kolmogorov–Sinai entropy.
Let $\operatorname{Homeo}_{+}(D_{n}^{2})$ be the group of orientation-preserving homeomorphisms of $D^{2}$ fixing the boundary pointwise and $n$ marked points as a set. The Nielsen realization problem for the braid group asks whether the natural projection $p_{n}:\operatorname{Homeo}_{+}(D_{n}^{2})\rightarrow B_{n}:=\unicode[STIX]{x1D70B}_{0}(\operatorname{Homeo}_{+}(D_{n}^{2}))$ has a section over subgroups of $B_{n}$. All of the previous methods use either torsion or Thurston stability, which do not apply to the pure braid group $PB_{n}$, the subgroup of $B_{n}$ that fixes $n$ marked points pointwise. In this paper, we show that the pure braid group has no realization inside the area-preserving homeomorphisms using rotation numbers.
Given a ${\mathcal{C}}^{\infty }$ expanding map $T$ of the circle, we construct a Hilbert space ${\mathcal{H}}$ of smooth functions on which the transfer operator ${\mathcal{L}}$ associated to $T$ acts as a compact operator. This result is made quantitative (in terms of singular values of the operator ${\mathcal{L}}$ acting on ${\mathcal{H}}$) using the language of Denjoy–Carleman classes. Moreover, the nuclear power decomposition of Baladi and Tsujii can be performed on the space ${\mathcal{H}}$, providing a bound on the growth of the dynamical determinant associated to ${\mathcal{L}}$.
We study Smale skew product endomorphisms (introduced in Mihailescu and Urbański [Skew product Smale endomorphisms over countable shifts of finite type. Ergod. Th. & Dynam. Sys. doi: 10.1017/etds.2019.31. Published online June 2019]) now over countable graph-directed Markov systems, and we prove the exact dimensionality of conditional measures in fibers, and then the global exact dimensionality of the equilibrium measure itself. Our results apply to large classes of systems and have many applications. They apply, for instance, to natural extensions of graph-directed Markov systems. Another application is to skew products over parabolic systems. We also give applications in ergodic number theory, for example to the continued fraction expansion, and the backward fraction expansion. In the end we obtain a general formula for the Hausdorff (and pointwise) dimension of equilibrium measures with respect to the induced maps of natural extensions ${\mathcal{T}}_{\unicode[STIX]{x1D6FD}}$ of $\unicode[STIX]{x1D6FD}$-maps $T_{\unicode[STIX]{x1D6FD}}$, for arbitrary $\unicode[STIX]{x1D6FD}>1$.
Let $\unicode[STIX]{x1D6E4}$ denote the mapping class group of the plane minus a Cantor set. We show that every action of $\unicode[STIX]{x1D6E4}$ on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.
Kifer, Peres, and Weiss proved in [A dimension gap for continued fractions with independent digits. Israel J. Math.124 (2001), 61–76] that there exists $c_{0}>0$, such that $\dim \unicode[STIX]{x1D707}\leq 1-c_{0}$ for any probability measure $\unicode[STIX]{x1D707}$, which makes the digits of the continued fraction expansion independent and identically distributed random variables. In this paper we prove that amongst this class of measures, there exists one whose dimension is maximal. Our results also apply in the more general setting of countable branched systems.
Von Neumann’s original proof of the ergodic theorem is revisited. A uniform convergence rate is established under the assumption that one can control the density of the spectrum of the underlying self-adjoint operator when restricted to suitable subspaces. Explicit rates are obtained when the bound is polynomial, with applications to the linear Schrödinger and wave equations. In particular, decay estimates for time averages of solutions are shown.
We consider multimodal maps with holes and study the evolution of the open systems with respect to equilibrium states for both geometric and Hölder potentials. For small holes, we show that a large class of initial distributions share the same escape rate and converge to a unique absolutely continuous conditionally invariant measure; we also prove a variational principle connecting the escape rate to the pressure on the survivor set, with no conditions on the placement of the hole. Finally, introducing a weak condition on the centre of the hole, we prove scaling limits for the escape rate for holes centred at both periodic and non-periodic points, as the diameter of the hole goes to zero.
A Cantor action is a minimal equicontinuous action of a countably generated group $G$ on a Cantor space $X$. Such actions are also called generalized odometers in the literature. In this work, we introduce two new conjugacy invariants for Cantor actions, the stabilizer limit group and the centralizer limit group. An action is wild if the stabilizer limit group is an increasing sequence of stabilizer groups without bound and otherwise is said to be stable if this group chain is bounded. For Cantor actions by a finitely generated group $G$, we prove that stable actions satisfy a rigidity principle and furthermore show that the wild property is an invariant of the continuous orbit equivalence class of the action. A Cantor action is said to be dynamically wild if it is wild and the centralizer limit group is a proper subgroup of the stabilizer limit group. This property is also a conjugacy invariant and we show that a Cantor action with a non-Hausdorff element must be dynamically wild. We then give examples of wild Cantor actions with non-Hausdorff elements, using recursive methods from geometric group theory to define actions on the boundaries of trees.
The Chirikov standard map is a prototypical example of a one-parameter family of volume-preserving maps for which one anticipates chaotic behavior on a non-negligible (positive-volume) subset of phase space for a large set of parameters. Rigorous analysis is notoriously difficult and it remains an open question whether this chaotic region, the stochastic sea, has positive Lebesgue measure for any parameter value. Here we study a problem of intermediate difficulty: compositions of standard maps with increasing coefficient. When the coefficients increase to infinity at a sufficiently fast polynomial rate, we obtain a strong law, a central limit theorem, and quantitative mixing estimates for Holder observables. The methods used are not specific to the standard map and apply to a class of compositions of ‘prototypical’ two-dimensional maps with hyperbolicity on ‘most’ of phase space.
A well-known result in the area of dynamical systems asserts that any invertible hyperbolic operator on any Banach space is structurally stable. This result was originally obtained by Hartman in 1960 for operators on finite-dimensional spaces. The general case was independently obtained by Palis and Pugh around 1968. We will exhibit a class of examples of structurally stable operators that are not hyperbolic, thereby showing that the converse of the above-mentioned result is false in general. We will also prove that an invertible operator on a Banach space is hyperbolic if and only if it is expansive and has the shadowing property. Moreover, we will show that if a structurally stable operator is expansive, then it must be uniformly expansive. Finally, we will characterize the weighted shifts on the spaces $c_{0}(\mathbb{Z})$ and $\ell _{p}(\mathbb{Z})$ ($1\leq p<\infty$) that satisfy the shadowing property.
In this survey we prove the sharpest results on the loss of Sobolev regularity for solutions of the cohomological equation for translation flows on translation surfaces, available to the methods developed by the author in Forni [Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus. Ann. of Math. (2)146(2) (1997), 295–344] and Forni [Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. of Math. (2)155(1) (2002), 1–103]. The paper was mostly written between 2005 and 2006 while the author was at the University of Toronto, Canada, and was posted on arXiv in July 2007 [Forni. Sobolev regularity of solutions of the cohomological equation. Preprint, 2007, arXiv:0707.0940v2]. In an updated introduction we describe our results, taking into account later work on the problem and relevant recent progress in the field of Teichmüller dynamics, interval exchange transformations and translation flows.
The Assouad dimension of a metric space determines its extremal scaling properties. The derived notion of the Assouad spectrum fixes relative scales by a scaling function to obtain interpolation behaviour between the quasi-Assouad and the box-counting dimensions. While the quasi-Assouad and Assouad dimensions often coincide, they generally differ in random constructions. In this paper we consider a generalised Assouad spectrum that interpolates between the quasi-Assouad and the Assouad dimension. For common models of random fractal sets, we obtain a dichotomy of its behaviour by finding a threshold function where the quasi-Assouad behaviour transitions to the Assouad dimension. This threshold can be considered a phase transition, and we compute the threshold for the Gromov boundary of Galton–Watson trees and one-variable random self-similar and self-affine constructions. We describe how the stochastically self-similar model can be derived from the Galton–Watson tree result.
In analogy with the lower Assouad dimensions of a set, we study the lower Assouad dimensions of a measure. As with the upper Assouad dimensions, the lower Assouad dimensions of a measure provide information about the extreme local behaviour of the measure. We study the connection with other dimensions and with regularity properties. In particular, the quasi-lower Assouad dimension is dominated by the infimum of the measure’s lower local dimensions. Although strict inequality is possible in general, equality holds for the class of self-similar measures of finite type. This class includes all self-similar, equicontractive measures satisfying the open set condition, as well as certain “overlapping” self-similar measures, such as Bernoulli convolutions with contraction factors that are inverses of Pisot numbers.
We give lower bounds for the lower Assouad dimension for measures arising from a Moran construction, prove that self-affine measures are uniformly perfect and have positive lower Assouad dimension, prove that the Assouad spectrum of a measure converges to its quasi-Assouad dimension and show that coincidence of the upper and lower Assouad dimension of a measure does not imply that the measure is s-regular.
We begin by defining a homoclinic class for homeomorphisms. Then we prove that if a topological homoclinic class Λ associated with an area-preserving homeomorphism f on a surface M is topologically hyperbolic (i.e. has the shadowing and expansiveness properties), then Λ = M and f is an Anosov homeomorphism.
We consider closed orientable surfaces $S$ of genus $g>1$ and homeomorphisms $f:S\rightarrow S$ isotopic to the identity. A set of hypotheses is presented, called a fully essential system of curves $\mathscr{C}$ and it is shown that under these hypotheses, the natural lift of $f$ to the universal cover of $S$ (the Poincaré disk $\mathbb{D}$), denoted by $\widetilde{f},$ has complicated and rich dynamics. In this context, we generalize results that hold for homeomorphisms of the torus isotopic to the identity when their rotation sets contain zero in the interior. In particular, for $C^{1+\unicode[STIX]{x1D716}}$ diffeomorphisms, we show the existence of rotational horseshoes having non-trivial displacements in every homotopical direction. As a consequence, we found that the homological rotation set of such an $f$ is a compact convex subset of $\mathbb{R}^{2g}$ with maximal dimension and all points in its interior are realized by compact $f$-invariant sets and by periodic orbits in the rational case. Also, $f$ has uniformly bounded displacement with respect to rotation vectors in the boundary of the rotation set. This implies, in case where $f$ is area preserving, that the rotation vector of Lebesgue measure belongs to the interior of the rotation set.
We prove that a class of weakly partially hyperbolic endomorphisms on $\mathbb{T}^{2}$ are dynamically coherent and leaf conjugate to linear toral endomorphisms. Moreover, we give an example of a partially hyperbolic endomorphism on $\mathbb{T}^{2}$ which does not admit a centre foliation.
Let $f$ be an $n$-dimensional holomorphic map defined in a neighborhood of the origin such that the origin is an isolated fixed point of all of its iterates, and let ${\mathcal{N}}_{M}(f)$ denote the number of periodic orbits of $f$ of period $M$ hidden at the origin. Gorbovickis gives an efficient way of computing ${\mathcal{N}}_{M}(f)$ for a large class of holomorphic maps. Inspired by Gorbovickis’ work, we establish a similar method for computing ${\mathcal{N}}_{M}(f)$ for a much larger class of holomorphic germs, in particular, having arbitrary Jordan matrices as their linear parts. Moreover, we also give another proof of the result of Gorbovickis [On multi-dimensional Fatou bifurcation. Bull. Sci. Math.138(3)(2014) 356–375] using our method.