We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define fractal interpolation on unbounded domains for a certain class of topological spaces and construct local fractal functions. In addition, we derive some properties of these local fractal functions, consider their tensor products, and give conditions for local fractal functions on unbounded domains to be elements of Bochner–Lebesgue spaces.
It is well known that along any stable manifold the dynamics travels with an exponential rate. Moreover, this rate is close to the slowest exponential rate along the stable direction of the linearization, provided that the nonlinear part is sufficiently small. In this note, we show that whenever there is also a fastest finite exponential rate along the stable direction of the linearization, similarly we can establish a lower bound for the speed of the nonlinear dynamics along the stable manifold. We consider both cases of discrete and continuous time, as well as a nonuniform exponential behaviour.
In this paper, we show that for every nonnilpotent hyperbolic map $f$ on an infra-nilmanifold, the set $\operatorname{HPer}(f)$ is cofinite in $\mathbb{N}$. This is a generalization of a similar result for expanding maps in Lee and Zhao (J. Math. Soc. Japan 59(1) (2007), 179–184). Moreover, we prove that for every nilpotent map $f$ on an infra-nilmanifold, $\operatorname{HPer}(f)=\{1\}$.
We consider stable and almost stable points of autonomous and nonautonomous discrete dynamical systems defined on the closed unit interval. Our considerations are associated with chaos theory by adding an additional assumption that an entropy of a function at a given point is infinite.
For a non-autonomous dynamics defined by a sequence of matrices, we consider the notion of a non-uniform exponential trichotomy for an arbitrary growth rate (this means that there may exist contracting, expanding and neutral directions with an arbitrary fixed growth rate). The purpose of our work is two-fold: to use a regularity coefficient in order to show that these trichotomies occur naturally and to provide several alternative characterizations of those for which the non-uniform part is arbitrarily small. This includes characterizations in terms of the growth rate of volumes and of the Lyapunov exponents of the dynamics and its adjoint. We also obtain sharp lower and upper bounds for the regularity coefficient.
In this paper we discuss the continuity of the Hausdorff dimension of the invariant set of generalised graph-directed systems given by contractive infinitesimal similitudes on bounded complete metric spaces. We use the theory of positive linear operators to show that the Hausdorff dimension varies continuously with the functions defining the generalised graph-directed system under suitable assumptions.
Consider a $C^{2}$ family of mixing $C^{4}$ piecewise expanding unimodal maps $t\in [a,b]\mapsto f_{t}$, with a critical point $c$, that is transversal to the topological classes of such maps. Given a Lipchitz observable $\unicode[STIX]{x1D719}$ consider the function
where $\unicode[STIX]{x1D707}_{t}$ is the unique absolutely continuous invariant probability of $f_{t}$. Suppose that $\unicode[STIX]{x1D70E}_{t}>0$ for every $t\in [a,b]$, where
where $\unicode[STIX]{x1D6F9}(t)$ is a dynamically defined function and $m$ is the Lebesgue measure on $[a,b]$, normalized in such way that $m([a,b])=1$. As a consequence, we show that ${\mathcal{R}}_{\unicode[STIX]{x1D719}}$ is not a Lipchitz function on any subset of $[a,b]$ with positive Lebesgue measure.
In this paper, semidefinite optimization method is proposed to estimate bounds on linear functionals defined on solutions of linear ordinary differential equations (ODEs) with smooth coefficients. The method can get upper and lower bounds by solving two semidefinite programs, not solving ODEs directly. Its convergence theorem is proved. The theorem shows that the upper and lower bounds series of linear functionals discussed can approach their exact values infinitely. Numerical results show that the method is effective for the estimation problems discussed. In addition, in order to reduce calculation amount, Cheybeshev polynomials are applied to replace Taylor polynomials of smooth coefficients in computing process.
We study the numerical performance of a continuous data assimilation (downscaling) algorithm, based on ideas from feedback control theory, in the context of the two-dimensional incompressible Navier-Stokes equations. Our model problem is to recover an unknown reference solution, asymptotically in time, by using continuous-in-time coarse-mesh nodal-point observational measurements of the velocity field of this reference solution (subsampling), as might be measured by an array of weather vane anemometers. Our calculations show that the required nodal observation density is remarkably less than what is suggested by the analytical study; and is in fact comparable to the number of numerically determining Fourier modes, which was reported in an earlier computational study by the authors. Thus, this method is computationally efficient and performs far better than the analytical estimates suggest.
We define a class of nonlinear mappings which is properly larger than the class of nonexpansive mappings. We also give a fixed point theorem for this new class of mappings.
We consider compact sets which are invariant and partially hyperbolic under the dynamics of a diffeomorphism of a manifold. We prove that such a set $K$ is contained in a locally invariant center submanifold if and only if each strong stable and strong unstable leaf intersects $K$ at exactly one point.
We consider systems of quasi-periodic linear differential equations associated to a‘resonant’ frequency vector ${\it\omega}$, namely, a vector whose coordinates are not linearly independent over $\mathbb{Z}$. We give sufficient conditions that ensure that a small analytic perturbation of a constant system is analytically conjugate to a ‘resonant cocycle’. We also apply our results to the non-resonant case: we obtain sufficient conditions for reducibility.
Let ${\it\gamma}$ be a hyperbolic closed orbit of a $C^{1}$ vector field $X$ on a compact $C^{\infty }$ manifold $M$ and let $H_{X}({\it\gamma})$ be the homoclinic class of $X$ containing ${\it\gamma}$. In this paper, we prove that if a $C^{1}$-persistently expansive homoclinic class $H_{X}({\it\gamma})$ has the shadowing property, then $H_{X}({\it\gamma})$ is hyperbolic.
We show that the space of actions of every finitely generated, nilpotent group by $C^1$ orientation-preserving diffeomorphisms of the circle is path-connected. This is done via a general result that allows any given action on the interval to be connected to the trivial one by a continuous path of topological conjugates.
Since the foundational work of Chenciner and Montgomery in 2000 there has been a great deal of interest in choreographic solutions of the $n$-body problem: periodic motions where the $n$ bodies all follow one another at regular intervals along a closed path. The principal approach combines variational methods with symmetry properties. In this paper, we give a systematic treatment of the symmetry aspect. In the first part, we classify all possible symmetry groups of planar $n$-body collision-free choreographies. These symmetry groups fall into two infinite families and, if $n$ is odd, three exceptional groups. In the second part, we develop the equivariant fundamental group and use it to determine the topology of the space of loops with a given symmetry, which we show is related to certain cosets of the pure braid group in the full braid group, and to centralizers of elements of the corresponding coset. In particular, we refine the symmetry classification by classifying the connected components of the set of loops with any given symmetry. This leads to the existence of many new choreographies in $n$-body systems governed by a strong force potential.
Consider a pseudogroup on $( \mathbb{C} , 0)$ generated by two local diffeomorphisms having analytic conjugacy
classes a priori fixed in $\mathrm{Diff} \hspace{0.167em} ( \mathbb{C} , 0)$. We show that a generic pseudogroup as above is such that every
point has a (possibly trivial) cyclic stabilizer. It also follows that these generic
groups possess infinitely many hyperbolic orbits. This result possesses several
applications to the topology of leaves of foliations, and we shall explicitly
describe the case of nilpotent foliations associated to Arnold’s singularities of
type ${A}^{2n+ 1} $.
We show that generically a pseudogroup generated by holomorphic diffeomorphisms defined about $0\in \mathbb{C} $ is free in the sense of pseudogroups even if the class of conjugacy of the generators is fixed. This result has a number of consequences on the topology of leaves for a (singular) holomorphic foliation defined on a neighborhood of an invariant curve. In particular, in the classical and simplest case arising from local nilpotent foliations possessing a unique separatrix which is given by a cusp of the form $\{ {y}^{2} - {x}^{2n+ 1} = 0\} $, our results allow us to settle the problem of showing that a generic foliation possesses only countably many non-simply connected leaves.
We investigate the topological and metric properties of attractors of an iterated function system (IFS) whose functions may not be contractive. We focus, in particular, on invertible IFSs of finitely many maps on a compact metric space. We rely on ideas of Kieninger [Iterated Function Systems on Compact Hausdorff Spaces (Shaker, Aachen, 2002)] and McGehee and Wiandt [‘Conley decomposition for closed relations’, Differ. Equ. Appl.12 (2006), 1–47] restricted to what is, in many ways, a simpler setting, but focused on a special type of attractor, namely point-fibred invariant sets. This allows us to give short proofs of some of the key ideas.
For impulsive differential equations, we construct topological conjugacies between linear and nonlinear perturbations of non-uniform exponential dichotomies. In the case of linear perturbations, the topological conjugacies are constructed in a more or less explicit manner. In the nonlinear case, we obtain an appropriate version of the Grobman–Hartman Theorem for impulsive equations, with a simple and direct proof that involves no discretization of the dynamics.