To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is known that hyperbolic linear delay difference equations are shadowable on the half-line. In this article, we prove the converse and hence the equivalence between hyperbolicity and the positive shadowing property for the following two classes of linear delay difference equations: (a) for non-autonomous equations with finite delays and uniformly bounded compact coefficient operators in Banach spaces and (b) for Volterra difference equations with infinite delay in finite dimensional spaces.
We study locally constant skew-product maps over full shifts of finite symbols with arbitrary compact metric spaces as fiber spaces. We introduce a new criterion to determine the density of leaves of the strong unstable (and strong stable) foliation, that is, for its minimality. When the fiber space is a circle, we show that both strong foliations are minimal for an open and dense set of robustly transitive skew-products. We provide examples where either one foliation is minimal or neither is minimal. Our approach involves investigating the dynamics of the associated iterated function system (IFS). We establish the asymptotic stability of the phase space of the IFS when it is a strict attractor of the system. We also show that any transitive IFS consisting of circle diffeomorphisms that preserve orientation can be approximated by a robust forward and backward minimal, expanding, and ergodic (with respect to Lebesgue) IFS. Lastly, we provide examples of smooth robustly transitive IFSs where either the forward or the backward minimal fails, or both.
In Oliveira, Schlomiuk, Travaglini, and Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ.45(2021), 1–90, the authors investigate about the integrability of the family QSH (the whole class of non-degenerate planar quadratic systems possessing at least one invariant hyperbola). However, some very difficult cases are left open in Oliveira, Schlomiuk, Travaglini, and Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ.45(2021), 1–90, and the main aim of this article is to study the Liouvillian integrability some of the systems that were left behind in Oliveira, Schlomiuk, Travaglini, and Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ.45(2021), 1–90.
Let $f,g$ be $C^2$ expanding maps on the circle which are topologically conjugate. We assume that the derivatives of f and g at corresponding periodic points coincide for some large period N. We show that f and g are ‘approximately smoothly conjugate.’ Namely, we construct a $C^2$ conjugacy $h_N$ such that $h_N$ is exponentially close to h in the $C^0$ topology, and $f_N:=h_N^{-1}gh_N$ is exponentially close to f in the $C^1$ topology. Our main tool is a uniform effective version of Bowen’s equidistribution of weighted periodic orbits to the equilibrium state.
We prove that every homeomorphism of a compact manifold with dimension one has zero topological emergence, whereas in dimension greater than one the topological emergence of a $C^0-$generic homeomorphism is maximal, equal to the dimension of the manifold. We also show that the metric emergence of a continuous self-map on compact metric space has the intermediate value property.
We study piecewise injective, but not necessarily globally injective, contracting maps on a compact subset of ${\mathbb R}^d$. We prove that, generically, the attractor and the set of discontinuities of such a map are disjoint, and hence the attractor consists of periodic orbits. In addition, we prove that piecewise injective contractions are generically topologically stable.
For $\unicode{x3bb}>1$, we consider the locally free ${\mathbb Z}\ltimes _\unicode{x3bb} \mathbb R$ actions on $\mathbb T^2$. We show that if the action is $C^r$ with $r\geq 2$, then it is $C^{r-\epsilon }$-conjugate to an affine action generated by a hyperbolic automorphism and a linear translation flow along the expanding eigen-direction of the automorphism. In contrast, there exists a $C^{1+\alpha }$-action which is semi-conjugate, but not topologically conjugate to an affine action.
In this paper, we study a connection between disintegration of measures and geometric properties of probability spaces. We prove a disintegration theorem, addressing disintegration from the perspective of an optimal transport problem. We look at the disintegration of transport plans, which are used to define and study disintegration maps. Using these objects, we study the regularity and absolute continuity of disintegration of measures. In particular, we exhibit conditions for which the disintegration map is weakly continuous and one can obtain a path of measures given by this map. We show a rigidity condition for the disintegration of measures to be given into absolutely continuous measures.
Due to a result by Glasner and Downarowicz [Isomorphic extensions and applications. Topol. Methods Nonlinear Anal.48(1) (2016), 321–338], it is known that a minimal system is mean equicontinuous if and only if it is an isomorphic extension of its maximal equicontinuous factor. The majority of known examples of this type are almost automorphic, that is, the factor map to the maximal equicontinuous factor is almost one-to-one. The only cases of isomorphic extensions which are not almost automorphic are again due to Glasner and Downarowicz, who in the same article provide a construction of such systems in a rather general topological setting. Here, we use the Anosov–Katok method to provide an alternative route to such examples and to show that these may be realized as smooth skew product diffeomorphisms of the two-torus with an irrational rotation on the base. Moreover – and more importantly – a modification of the construction allows to ensure that lifts of these diffeomorphisms to finite covering spaces provide novel examples of finite-to-one topomorphic extensions of irrational rotations. These are still strictly ergodic and share the same dynamical eigenvalues as the original system, but show an additional singular continuous component of the dynamical spectrum.
We study the dynamics of dissipative billiard maps within planar convex domains. Such maps have a global attractor. We are interested in the topological and dynamical complexity of the attractor, in terms both of the geometry of the billiard table and of the strength of the dissipation. We focus on the study of an invariant subset of the attractor, the so-called Birkhoff attractor. On the one hand, we show that for a generic convex table with ‘pinched’ curvature, the Birkhoff attractor is a normally contracted manifold when the dissipation is strong. On the other hand, for a mild dissipation, we prove that, generically, the Birkhoff attractor is complicated, both from the topological and the dynamical points of view.
Let G be a torsion-free, finitely generated, nilpotent and metabelian group. In this work, we show that G embeds into the group of orientation-preserving $C^{1+\alpha }$-diffeomorphisms of the compact interval for all $\alpha < 1/k$, where k is the torsion-free rank of $G/A$ and A is a maximal abelian subgroup. We show that, in many situations, the corresponding $1/k$ is critical in the sense that there is no embedding of G with higher regularity. A particularly nice family where this happens is the family of $(2n+1)$-dimensional Heisenberg groups, for which we can show that the critical regularity is equal to $1+1/n$.
For a class of robustly transitive diffeomorphisms on ${\mathbb T}^4$ introduced by Shub [Topologically transitive diffeomorphisms of $T^4$. Proceedings of the Symposium on Differential Equations and Dynamical Systems (Lecture notes in Mathematics, 206). Ed. D. Chillingworth. Springer, Berlin, 1971, pp. 39–40], satisfying an additional bunching condition, we show that there exists a $C^2$ open and $C^r$ dense subset ${\mathcal U}^r$, $2\leq r\leq \infty $, such that any two hyperbolic points of $g\in {\mathcal U}^r$ with stable index $2$ are homoclinically related. As a consequence, every $g\in {\mathcal U}^r$ admits a unique homoclinic class associated to the hyperbolic periodic points with index $2$, and this homoclinic class coincides with the whole ambient manifold. Moreover, every $g\in {\mathcal U}^r$ admits at most one measure of maximal entropy, and every $g\in {\mathcal U}^{\infty }$ admits a unique measure of maximal entropy.
We perform a multifractal analysis of homological growth rates of oriented geodesics on hyperbolic surfaces. Our main result provides a formula for the Hausdorff dimension of level sets of prescribed growth rates in terms of a generalized Poincaré exponent of the Fuchsian group. We employ symbolic dynamics developed by Bowen and Series, ergodic theory and thermodynamic formalism to prove the analyticity of the dimension spectrum.
Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.
Given a two-sided shift space on a finite alphabet and a continuous potential function, we give conditions under which an equilibrium measure can be described using a construction analogous to Hausdorff measure that goes back to the work of Bowen. This construction was previously applied to smooth uniformly and partially hyperbolic systems by the first author, Pesin, and Zelerowicz. Our results here apply to all subshifts of finite type and Hölder continuous potentials, but extend beyond this setting, and we also apply them to shift spaces with synchronizing words.
We prove that every genuinely partially hyperbolic $\mathbb {Z}^r$-action by toral automorphisms can be perturbed in $C^1$-topology, so that the resulting action is continuously conjugate, but not $C^1$-conjugate, to the original one.
For a proper, Gromov-hyperbolic metric space and a discrete, non-elementary, group of isometries, we define a natural subset of the limit set at infinity of the group called the ergodic limit set. The name is motivated by the fact that every ergodic measure which is invariant for the geodesic flow on the quotient metric space is concentrated on geodesics with endpoints belonging to the ergodic limit set. We refine the classical Bishop–Jones theorem proving that the packing dimension of the ergodic limit set coincides with the critical exponent of the group.
Two asymptotic configurations on a full $\mathbb {Z}^d$-shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$. We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to $\mathbb {Z}^d$ of the characterization of Sturmian sequences by their factor complexity $n+1$. Many open questions are raised by the current work and are listed in the introduction.
In this note, we examine the proportion of periodic orbits of Anosov flows that lie in an infinite zero density subset of the first homology group. We show that on a logarithmic scale we get convergence to a discrete fractal dimension.
In this paper, we study transitivity of partially hyperbolic endomorphisms of the two torus whose action in the first homology group has two integer eigenvalues of moduli greater than one. We prove that if the Jacobian is everywhere greater than the modulus of the largest eigenvalue, then the map is robustly transitive. For this, we introduce Blichfedt’s theorem as a tool for extracting dynamical information from the action of a map in homology. We also treat the case of specially partially hyperbolic endomorphisms, for which we obtain a complete dichotomy: either the map is transitive and conjugated to its linear part, or its unstable foliation must contain an annulus which may either be wandering or periodic.