To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $f$ be an $n$-dimensional holomorphic map defined in a neighborhood of the origin such that the origin is an isolated fixed point of all of its iterates, and let ${\mathcal{N}}_{M}(f)$ denote the number of periodic orbits of $f$ of period $M$ hidden at the origin. Gorbovickis gives an efficient way of computing ${\mathcal{N}}_{M}(f)$ for a large class of holomorphic maps. Inspired by Gorbovickis’ work, we establish a similar method for computing ${\mathcal{N}}_{M}(f)$ for a much larger class of holomorphic germs, in particular, having arbitrary Jordan matrices as their linear parts. Moreover, we also give another proof of the result of Gorbovickis [On multi-dimensional Fatou bifurcation. Bull. Sci. Math.138(3)(2014) 356–375] using our method.
Let $B$ be a rational function of degree at least two that is neither a Lattès map nor conjugate to $z^{\pm n}$ or $\pm T_{n}$. We provide a method for describing the set $C_{B}$ consisting of all rational functions commuting with $B$. Specifically, we define an equivalence relation $\underset{B}{{\sim}}$ on $C_{B}$ such that the quotient $C_{B}/\underset{B}{{\sim}}$ possesses the structure of a finite group $G_{B}$, and describe generators of $G_{B}$ in terms of the fundamental group of a special graph associated with $B$.
We prove several results concerning the relative position of points in the postsingular set P(f) of a meromorphic map f and the boundary of a Baker domain or the successive iterates of a wandering component. For Baker domains we answer a question of Mihaljević-Brandt and Rempe-Gillen. For wandering domains we show that if the iterates Un of such a domain have uniformly bounded diameter, then there exists a sequence of postsingular values pn such that ${\rm dist} (p_n, U_n)\to 0$ as $n\to \infty $. We also prove that if $U_n \cap P(f)=\emptyset $ and the postsingular set of f lies at a positive distance from the Julia set (in ℂ), then the sequence of iterates of any wandering domain must contain arbitrarily large disks. This allows to exclude the existence of wandering domains for some meromorphic maps with infinitely many poles and unbounded set of singular values.
Let $f$ be a holomorphic endomorphism of $\mathbb{P}^{2}$ of degree $d\geq 2$. We estimate the local directional dimensions of closed positive currents $S$ with respect to ergodic dilating measures $\unicode[STIX]{x1D708}$. We infer several applications. The first one is an upper bound for the lower pointwise dimension of the equilibrium measure, towards a Binder–DeMarco’s formula for this dimension. The second one shows that every current $S$ containing a measure of entropy $h_{\unicode[STIX]{x1D708}}>\log d$ has a directional dimension ${>}2$, which answers a question of de Thélin–Vigny in a directional way. The last one estimates the dimensions of the Green current of Dujardin’s semi-extremal endomorphisms.
The study of the dynamics of an holomorphic map near a fixed point is a central topic in complex dynamical systems. In this paper, we will consider the corresponding random setting: given a probability measure $\unicode[STIX]{x1D708}$ with compact support on the space of germs of holomorphic maps fixing the origin, we study the compositions $f_{n}\circ \cdots \circ f_{1}$, where each $f_{i}$ is chosen independently with probability $\unicode[STIX]{x1D708}$. As in the deterministic case, the stability of the family of the random iterates is mostly determined by the linear part of the germs in the support of the measure. A particularly interesting case occurs when all Lyapunov exponents vanish, in which case stability implies simultaneous linearizability of all germs in $\text{supp}(\unicode[STIX]{x1D708})$.
Let $\unicode[STIX]{x1D719}$ be a post-critically finite branched covering of a two-sphere. By work of Koch, the Thurston pullback map induced by $\unicode[STIX]{x1D719}$ on Teichmüller space descends to a multivalued self-map—a Hurwitz correspondence ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$—of the moduli space ${\mathcal{M}}_{0,\mathbf{P}}$. We study the dynamics of Hurwitz correspondences via numerical invariants called dynamical degrees. We show that the sequence of dynamical degrees of ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$ is always non-increasing and that the behavior of this sequence is constrained by the behavior of $\unicode[STIX]{x1D719}$ at and near points of its post-critical set.
It was recently shown in Gaidashev and Yampolsky [Golden mean Siegel disk universality and renormalization. Preprint, 2016, arXiv:1604.00717] that appropriately defined renormalizations of a sufficiently dissipative golden-mean semi-Siegel Hénon map converge super-exponentially fast to a one-dimensional renormalization fixed point. In this paper, we show that the asymptotic two-dimensional form of these renormalizations is universal and is parameterized by the average Jacobian. This is similar to the limit behavior of period-doubling renormalizations in the Hénon family considered in de Carvalho et al [Renormalization in the Hénon family, I: universality but non-rigidity. J. Stat. Phys.121 (5/6) (2006), 611–669]. As an application of our result, we prove that the boundary of the golden-mean Siegel disk of a dissipative Hénon map is non-smoothly rigid.
We construct a renormalization operator which acts on analytic circle maps whose critical exponent $\unicode[STIX]{x1D6FC}$ is not necessarily an odd integer $2n+1$, $n\in \mathbb{N}$. When $\unicode[STIX]{x1D6FC}=2n+1$, our definition generalizes cylinder renormalization of analytic critical circle maps by Yampolsky [Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Études Sci.96 (2002), 1–41]. In the case when $\unicode[STIX]{x1D6FC}$ is close to an odd integer, we prove hyperbolicity of renormalization for maps of bounded type. We use it to prove universality and $C^{1+\unicode[STIX]{x1D6FC}}$-rigidity for such maps.
We consider a meromorphic family of endomorphisms of degree at least 2 of a complex projective space that is parameterized by the unit disk. We prove that the measure of maximal entropy of these endomorphisms converges to the equilibrium measure of the associated non-Archimedean dynamical system when the system degenerates. The convergence holds in the hybrid space constructed by Berkovich and further studied by Boucksom and Jonsson. We also infer from our analysis an estimate for the blow-up of the Lyapunov exponent near a pole in one-dimensional families of endomorphisms.
We prove that one-parameter families of real germs of conformal diffeomorphisms tangent to the involution x ↦−x are rigid in the parameter. We establish a connection between the dynamics in the Poincaré and Siegel domains. Although repeatedly employed in the literature, the dynamics in the Siegel domain does not explain the intrinsic real properties of these germs. Rather, these properties are fully elucidated in the Poincaré domain, where the fixed points are linearizable. However, a detailed study of the dynamics in the Siegel domain is of crucial importance. We relate both points of view on the intersection of the Siegel normalization domains.
In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$
By homotopy linear algebra we mean the study of linear functors between slices of the ∞-category of ∞-groupoids, subject to certain finiteness conditions. After some standard definitions and results, we assemble said slices into ∞-categories to model the duality between vector spaces and profinite-dimensional vector spaces, and set up a global notion of homotopy cardinality à la Baez, Hoffnung and Walker compatible with this duality. We needed these results to support our work on incidence algebras and Möbius inversion over ∞-groupoids; we hope that they can also be of independent interest.
Let $X$ be a projective manifold of dimension $n$. Suppose that $T_{X}$ contains an ample subsheaf. We show that $X$ is isomorphic to $\mathbb{P}^{n}$. As an application, we derive the classification of projective manifolds containing a $\mathbb{P}^{r}$-bundle as an ample divisor by the recent work of Litt.
In this paper, in terms of the hyperbolic metric, we give a condition under which the image of a hyperbolic domain of an analytic function contains a round annulus centred at the origin. From this, we establish results on the multiply connected wandering domains of a meromorphic function that contain large round annuli centred at the origin. We thereby successfully extend the results of transcendental meromorphic functions with finitely many poles to those with infinitely many poles.
Let d(c) denote the Hausdorff dimension of the Julia set Jc of the polynomial fc(z) = z2 +c. The function c ↦ d(c) is real-analytic on the interval (–3/4, 1/4), which is in the domain bounded by the main cardioid of the Mandelbrot set. We prove that the function d is convex close to 1/4 on the left side of it.
In this paper we discuss the continuity of the Hausdorff dimension of the invariant set of generalised graph-directed systems given by contractive infinitesimal similitudes on bounded complete metric spaces. We use the theory of positive linear operators to show that the Hausdorff dimension varies continuously with the functions defining the generalised graph-directed system under suitable assumptions.
Let AT(Δ) be the asymptotic universal Teichmüller space, viewed as the space of all asymptotic Teichmüller equivalence classes [[μ]]. We show that if μ is asymptotically extremal in AT(Δ) and hp([[μ]]) < h([[μ]]) for some boundary point p of Δ, then there are infinitely many geodesics joining [[0]] and [[μ]] in AT(Δ). As a corollary, a necessary condition for a complex dilatation to be uniquely extremal in AT(Δ) is given.
Let be a non-constant elliptic function. We prove that the Hausdorff dimension of the escaping set of f equals 2q/(q+1), where q is the maximal multiplicity of poles of f. We also consider the escaping parameters in the family fβ = βf, i.e. the parameters β for which the orbit of one critical value of fβ escapes to infinity. Under additional assumptions on f we prove that the Hausdorff dimension of the set of escaping parameters ε in the family fβ is greater than or equal to the Hausdorff dimension of the escaping set in the dynamical space. This demonstrates an analogy between the dynamical plane and the parameter plane in the class of transcendental meromorphic functions.
We study ultrametric germs in one variable having an irrationally indifferent fixed point at the origin with a prescribed multiplier. We show that for many values of the multiplier, the cycles in the unit disk of the corresponding monic quadratic polynomial are ‘optimal’ in the following sense: they minimize the distance to the origin among cycles of the same minimal period of normalized germs having an irrationally indifferent fixed point at the origin with the same multiplier. We also give examples of multipliers for which the corresponding quadratic polynomial does not have optimal cycles. In those cases we exhibit a higher-degree polynomial such that all of its cycles are optimal. The proof of these results reveals a connection between the geometric location of periodic points of ultrametric power series and the lower ramification numbers of wildly ramified field automorphisms. We also give an extension of Sen’s theorem on wildly ramified field automorphisms, and a characterization of minimally ramified power series in terms of the iterative residue.