To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper deals with criteria of algebraic independence for the derivatives of solutions of diagonal difference systems. The key idea consists in deriving from the commutativity of the differentiation and difference operators a sequence of iterated extensions of the original difference module, thereby setting the problem in the framework of difference Galois theory and finally reducing it to an exercise in linear algebra on the group of divisors of the involved elliptic curve or torus.
This is a study of the asymptotic behaviour of solutions of p-adic linear differential equations near the boundary of their convergence disks. We prove Dwork’s conjecture on the logarithmic growth of solutions in generic versus special disks.
We develop and study the epsilon factor of a ‘local system’ of p-adic coefficients over the spectrum of a complete discrete valuation field K with finite residue field of characteristic p>0. In the equal characteristic case, we define the epsilon factor of an overconvergent F-isocrystal over Spec(K), using the p-adic monodromy theorem. We conjecture a global formula, the p-adic product formula, analogous to Deligne’s formula for étale ℓ-adic sheaves proved by Laumon, which explains the importance of this local invariant. Namely, for an overconvergent F-isocrystal over an open subset of a projective smooth curve X, the constant of the functional equation of the L-series is expressed as a product of the local epsilon factors at the points of X. We prove the conjecture for rank-one overconvergent F-isocrystals and for finite unit-root overconvergent F-isocrystals. In the mixed characteristic case, we study the behavior of the epsilon factor by deformation to the field of norms.
Let υ be a Henselian valuation of arbitrary rank of a field K, and let ῡ be the (unique) extension of v to a fixed algebraic closure of K. For an element α ∈ \K, a chain α = α0, α1,…,αr of elements of , such that αi is of minimum degree over K with the property that ῡ(αi−1 − αi) = sup{ῡ(αi−1 − β) | [K (β) : K] < [K (αi−1) : K]} and that αr ∈ K, is called a saturated distinguished chain for α with respect to (K, υ). The notion of a saturated distinguished chain has been used to obtain results about the irreducible polynomials over any complete discrete rank one valued field K and to determine various arithmetic and metric invariants associated to elements of (cf. [J. Number Theory, 52 (1995), 98–118.] and [J. Algebra, 266 (2003), 14–26]). In this paper, a method is described of constructing a saturated distinguished chain for α, and also determining explicitly some invariants associated to α, when the degree of the extension K (α)/K is not divisible by the characteristic of the residue field of υ.
In the complex domain, one can integrate (solve) holomorphic ordinary differential equations (ODEs) near a non-singular point. We study the existence of solutions in the case of a positive characteristic base field k which is complete with respect to a non-Archimedean absolute value. ODEs are substituted by modules over a ring of analytic functions endowed with an action of all differential operators. The monodromy groups associated to the corresponding category are computed.
In this paper we give new results concerning the maximal regularity of the strict solution of an abstract second-order differential equation, with non-homogeneous boundary conditions of Dirichlet type, and set in an unbounded interval. The right-hand term of the equation is a Hölder continuous function.
We consider a discrete-time risk model which describes the evolution of the reserves of an insurance company at periodic dates fixed in advance. The amount of loss per unit of time corresponds to independent and identically distributed random variables with arithmetic distribution, and the process of the receipt of premiums is assumed to be deterministic, nonnegative but not uniform (instead of being constant and equal to 1 as in the standard, compound binomial model). For this model, we determine the probability of ruin (or of non-ruin), as well as the distribution of the severity of the eventual ruin, with some finite horizon. A compact and efficient exact expression is found by bringing up-to-date a generalised family of Appell polynomials. The method used is illustrated with some numerical examples.
We continue the study of the discrete-time risk model introduced by Picard et al. (2003). The cumulative loss process (St)t∊ℕ has independent and stationary increments, the increments per unit of time having nonnegative integer values with distribution {ai, i ∊ ℕ and mean ā. The premium receipt process (ck)k∊ℕ is deterministic, nonnegative and nonuniform; in addition, we assume it to be regular in order for there to exist a constant c > ā such that the deviation is bounded as the time t varies. We are interested in whether or not ruin occurs within a finite time. If T is the time of ruin, we obtain P(T = ∞) as the limit of P(T > t) as t → ∞, firstly in the particular case where c = 1/d for some positive d ∊ ℕ, and then in the general case for positive c under the condition that a0 > ½.
In this paper, further insight is obtained into the earlier approach of studying residually transcendental extensions of a valuation v of a field K to a simple transcendental extension K(x) of K by means of minimal pairs, thereby introducing new invariants corresponding to any element of an algebraic closure of K. It is also shown that these invariants are of independent interest as well. A characterization of those elements a belonging to is given such that there exists a minimal pair (a, δ) for some δ in the divisible closure of the value group of v.
Let v be a Henselian valuation of any rank of a field K and its unique prolongation to a fixed algebraic closure of K having value group . For any subfield L of , let R(L) denote the residue field of the valuation obtained by restricting to L. Using the canonical homomorphism from the valuation ring of v onto its residue field R(K), one can lift any monic irreducible polynomial with coefficients in R(K) to yield a monic irreducible polynomial with coefficients in K. In an attempt to generalize this concept, Popescu and Zaharescu introduced the notion of lifting with respect to a (K, v)-minimal pair (α, δ) belonging to × . As in the case of usual lifting, a given monic irreducible polynomial Q(y) belonging to R(K(α))[y] gives rise to several monic irreducible polynomials over K which are obtained by lifting with respect to a fixed (K, v)-minimal pair (α, δ). If F, F1 are two such lifted polynomials with coefficients in K having roots θ, θ1, respectively, then it is proved in the present paper that in case (K, v) is a tame field, it is shown that K(θ) and K(θ1) are indeed K-isomorphic.
A well-known result of Ehrenfeucht states that a difference polynomial f(X)-g(Y) in two variables X, Y with complex coefficients is irreducible if the degrees of f and g are coprime. Panaitopol and Stefǎnescu generalized this result, by giving an irreducibility condition for a larger class of polynomials called “generalized difference polynomials”. This paper gives an irreducibility criterion for more general polynomials, of which the criterion of Panaitopol and Stefǎnescu is a special case.
Let E be a local field, i.e., a field which is complete with respect to a rank one discrete valuation υ (we do not require any finiteness condition on the residue class field of E). Let f(X) be a polynomial in one variable, with coefficients in E. It is well known [4, 6, 9, 11, 13] that the Newton polygon method allows us to gather information about the factorization of f(X). This method consists of attaching to each side S of a Newton polygon of f(X) a factor (not necessarily irreducible) of f(X), the degree of which is the length of the horizontal projection of S.
Nonsingular derivations of modular Lie algebras which have finite multiplicative order play a role in the coclass theory for pro-p groups and Lie algebras. We study the orders of nonsingular derivations of finite-dimensional non-nilpotent Lie algebras of characteristic p > 0. The methods are essentially number-theoretic.
Let ν be a rank 1 henselian valuation of a field K having unique extension ῡ to an algebraic closure of K. For any subextension L/K of /K, let G (L), Res (L) denote respectively the value group and the residue field of the valuation obtained by restricting ῡ to L. If a∈\K define
We introduce a sequence of polynomials which are extensions of the classic Bernoulli polynomials. This generalization is obtained by using the Bessel functions of the first kind. We use these polynomials to evaluate explicitly a general class of series containing an entire function of exponential type.
Let ν be a valuation of any rank of a field K with value group Gν and f(X)= Xm + alXm−1 + … + am be a polynomial over K. In this paper, it is shown that if (ν(ai)/i)≥(ν(am)/m)>0 for l≤i≤m, and there does not exist any integer r>1 dividing m such that ν(am)/r∈Gν, then f(X) is irreducible over K. It is derived as a special case of a more general result proved here. It generalizes the usual Eisenstein Irreducibility Criterion and an Irreducibility Criterion due to Popescu and Zaharescu for discrete, rank-1 valued fields, (cf. [Journal of Number Theory, 52 (1995), 98–118]).
We give a positive answer to a question of Horst Tietz. A theorem of his that is related to the Mittag-Leffler theorem looks like a duality restult under some locally convex topology on the space of meromorphic functions. Tietz has posed the problem of finding such a topology. It is shown that a topology introduced by Holdguün in 1973 solves the problem. The main tool in the study of this topology is a projective description of it that is derived here. We also argue that Holdgrün's topology is the natural locally convex topology on the space of meromorphic functions.
We study polynomials over an integral domain R which, for infinitely many prime ideals P, induce a permutation of R/P. In many cases, every polynomial with this property must be a composition of Dickson polynomials and of linear polynomials with coefficients in the quotient field of R. In order to find out which of these compositions have the required property we investigate some number theoretic aspects of composition of polynomials. The paper includes a rather elementary proof of ‘Schur's Conjecture’ and contains a quantitative version for polynomials of prime degree.
Kronecker classes of algebraci number fields were introduced by W. Jehne in an attempt to understand the extent to which the structure of an extension K: k of algebraic number fields was influenced by the decomposition of primes of k over K. He found an important link between Kronecker equivalent field extensions and a certain covering property of their Galois groups. This surveys recent contributions of Group Theory to the understanding of Kronecker equivalence of algebraic number fields. In particular some group theoretic conjectures related to the Kronecker class of an extension of bounded degree are explored.
Let K0(x) be a simple transcendental extension of a field K0, υ0 be a valuation of K0 with value group G0 and residue field K0. Suppose is an inclusion of totally ordered abelian groups with [G1: G0] < ∞ such that G is the direct sum of G1 and an infinite cyclic group. It is proved that there exists an (explicitly constructible) valuation υ of K0(x) extending υ0 such that the value group of υ is G and its residue field is k, where k is a given finite extension of k0. This is analogous to a result of Matignon and Ohm [2, Corollary 3.2] for residually non-algebraic prolongations of υ0 to K0(x).