To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we develop methods for classifying Baker, Richter, and Szymik's Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss–Hopkins obstruction theory, and give descent-theoretic tools, applying Lurie's work on $\infty$-categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $E$, we find that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed by the Brauer–Wall group of $\pi _0(E)$, recovering a result of Baker, Richter, and Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes, depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $\mathbb {Z}/8\times \mathbb {Z}/2$. Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$-algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ $KO$-algebra with the same coefficient ring as $\mathrm {End}_{KO}(KU)$. This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$, previously studied by Mathew and Stojanoska.
In this thesis, we study transfer principles in the context of certain Henselian valued fields, namely Henselian valued fields of equicharacteristic $0$, algebraically closed valued fields, algebraically maximal Kaplansky valued fields, and unramified mixed characteristic Henselian valued fields with perfect residue field. First, we compute the burden of such a valued field in terms of the burden of its value group and its residue field. The burden is a cardinal related to the model theoretic complexity and a notion of dimension associated to $\text {NTP}_2$ theories. We show, for instance, that the Hahn field $\mathbb {F}_p^{\text {alg}}((\mathbb {Z}[1/p]))$ is inp-minimal (of burden 1), and that the ring of Witt vectors $W(\mathbb {F}_p^{\text {alg}})$ over $\mathbb {F}_p^{\text {alg}}$ is not strong (of burden $\omega $). This result extends previous work by Chernikov and Simon and realizes an important step toward the classification of Henselian valued fields of finite burden. Second, we show a transfer principle for the property that all types realized in a given elementary extension are definable. It can be written as follows: a valued field as above is stably embedded in an elementary extension if and only if its value group is stably embedded in the corresponding extension of value groups, its residue field is stably embedded in the corresponding extension of residue fields, and the extension of valued fields satisfies a certain algebraic condition. We show, for instance, that all types over the power series field $\mathbb {R}((t))$ are definable. Similarly, all types over the quotient field of $W(\mathbb {F}_p^{\text {alg}})$ are definable. This extends previous work of Cubides and Delon and of Cubides and Ye.
These distinct results use a common approach, which has been developed recently. It consists of establishing first a reduction to an intermediate structure called the leading term structure, or $\operatorname {\mathrm {RV}}$-sort, and then of reducing to the value group and residue field. This leads us to develop similar reduction principles in the context of pure short exact sequences of abelian groups.
This paper explores the existence and distribution of primitive elements in finite field extensions with prescribed traces in several intermediate field extensions. Our main result provides an inequality-like condition to ensure the existence of such elements. We then derive concrete existence results for a special class of intermediate extensions.
We introduceand study anatural class of fields in which certain first-order definable sets are existentially definable, and characterise this class by a number of equivalent conditions. Weshow that global fields belong to this class, and in particular obtain a number of new existential (or diophantine) predicates over global fields.
Without resorting to complex numbers or any advanced topological arguments, we show that any real polynomial of degree greater than two always has a real quadratic polynomial factor, which is equivalent to the fundamental theorem of algebra. The proof uses interlacing of bivariate polynomials similar to Gauss’s first proof of the fundamental theorem of algebra using complex numbers, but in a different context of division residues of strictly real polynomials. This shows the sufficiency of basic real analysis as the minimal platform to prove the fundamental theorem of algebra.
Let n be a positive integer and let $\mathbb{F} _{q^n}$ be the finite field with $q^n$ elements, where q is a prime power. We introduce a natural action of the projective semilinear group${\mathrm{P}\Gamma\mathrm{L}} (2, q^n)={\mathrm{PGL}} (2, q^n)\rtimes {\mathrm{Gal}} ({\mathbb F_{q^n}} /\mathbb{F} _q)$ on the set of monic irreducible polynomials over the finite field $\mathbb{F} _{q^n}$. Our main results provide information on the characterisation and number of fixed points.
We answer a question posed by Mordell in 1953, in the case of repeated radical extensions, and find necessary and sufficient conditions for $[F[\sqrt [m_1]{N_1},\dots ,\sqrt [m_\ell ]{N_\ell }]:F]=m_1\cdots m_\ell $, where F is an arbitrary field of characteristic not dividing any $m_i$.
We investigate unramified extensions of number fields with prescribed solvable Galois group G and certain extra conditions. In particular, we are interested in the minimal degree of a number field K, Galois over $\mathbb {Q}$, such that K possesses an unramified G-extension. We improve the best known bounds for the degree of such number fields K for certain classes of solvable groups, in particular for nilpotent groups.
If ${\mathfrak {F}}$ is a type-definable family of commensurable subsets, subgroups or subvector spaces in a metric structure, then there is an invariant subset, subgroup or subvector space commensurable with ${\mathfrak {F}}$. This in particular applies to type-definable or hyper-definable objects in a classical first-order structure.
We shall define a general notion of dimension, and study groups and rings whose interpretable sets carry such a dimension. In particular, we deduce chain conditions for groups, definability results for fields and domains, and show that a pseudofinite $\widetilde {\mathfrak M}_c$-group of finite positive dimension contains a finite-by-abelian subgroup of positive dimension, and a pseudofinite group of dimension 2 contains a soluble subgroup of dimension 2.
The following theorem, which includes as very special cases results of Jouanolou and Hrushovski on algebraic $D$-varieties on the one hand, and of Cantat on rational dynamics on the other, is established: Working over a field of characteristic zero, suppose $\unicode[STIX]{x1D719}_{1},\unicode[STIX]{x1D719}_{2}:Z\rightarrow X$ are dominant rational maps from an (possibly nonreduced) irreducible scheme $Z$ of finite type to an algebraic variety $X$, with the property that there are infinitely many hypersurfaces on $X$ whose scheme-theoretic inverse images under $\unicode[STIX]{x1D719}_{1}$ and $\unicode[STIX]{x1D719}_{2}$ agree. Then there is a nonconstant rational function $g$ on $X$ such that $g\unicode[STIX]{x1D719}_{1}=g\unicode[STIX]{x1D719}_{2}$. In the case where $Z$ is also reduced, the scheme-theoretic inverse image can be replaced by the proper transform. A partial result is obtained in positive characteristic. Applications include an extension of the Jouanolou–Hrushovski theorem to generalised algebraic ${\mathcal{D}}$-varieties and of Cantat’s theorem to self-correspondences.
Let P and Q be relatively prime integers greater than 1, and let f be a real valued discretely supported function on a finite dimensional real vector space V. We prove that if $f_{P}(x)=f(Px)-f(x)$ and $f_{Q}(x)=f(Qx)-f(x)$ are both $\Lambda $-periodic for some lattice $\Lambda \subset V$, then so is f (up to a modification at $0$). This result is used to prove a theorem on the arithmetic of elliptic function fields. In the last section, we discuss the higher rank analogue of this theorem and explain why it fails in rank 2. A full discussion of the higher rank case will appear in a forthcoming work.
We define and study generalizations of simplicial volume over arbitrary seminormed rings with a focus on p-adic simplicial volumes. We investigate the dependence on the prime and establish homology bounds in terms of p-adic simplicial volumes. As the main examples, we compute the weightless and p-adic simplicial volumes of surfaces. This is based on an alternative way to calculate classical simplicial volume of surfaces without hyperbolic straightening and shows that surfaces satisfy mod p and p-adic approximation of simplicial volume.
We study solutions of difference equations in the rings of sequences and, more generally, solutions of equations with a monoid action in the ring of sequences indexed by the monoid. This framework includes, for example, difference equations on grids (for example, standard difference schemes) and difference equations in functions on words. On the universality side, we prove a version of strong Nullstellensatz for such difference equations under the assumption that the cardinality of the ground field is greater than the cardinality of the monoid and construct an example showing that this assumption cannot be omitted. On the undecidability side, we show that the following problems are undecidable:
A first-order theory is equational if every definable set is a Boolean combination of instances of equations, that is, of formulae such that the family of finite intersections of instances has the descending chain condition. Equationality is a strengthening of stability. We show the equationality of the theory of proper extensions of algebraically closed fields and of the theory of separably closed fields of arbitrary imperfection degree.
This paper deals with the following problem. Given a finite extension of fields $\mathbb{L}/\mathbb{K}$ and denoting the trace map from $\mathbb{L}$ to $\mathbb{K}$ by $\text{Tr}$, for which elements $z$ in $\mathbb{L}$, and $a$, $b$ in $\mathbb{K}$, is it possible to write $z$ as a product $xy$, where $x,y\in \mathbb{L}$ with $\text{Tr}(x)=a,\text{Tr}(y)=b$? We solve most of these problems for finite fields, with a complete solution when the degree of the extension is at least 5. We also have results for arbitrary fields and extensions of degrees 2, 3 or 4. We then apply our results to the study of perfect nonlinear functions, semifields, irreducible polynomials with prescribed coefficients, and a problem from finite geometry concerning the existence of certain disjoint linear sets.
Let ℚsymm be the compositum of all symmetric extensions of ℚ, i.e., the finite Galois extensions with Galois group isomorphic to Sn for some positive integer n, and let ℤsymm be the ring of integers inside ℚsymm. Then, TH(ℤsymm) is primitive recursively decidable.
It is proven that, for a wide range of integers s (2 < s < p − 2), the existence of a single wildly ramified odd prime l ≠ p leads to either the alternating group or the full symmetric group as Galois group of any irreducible trinomial Xp + aXs + b of prime degree p.
A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over $\mathbb{Q}$. More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $\mathbb{Q}_{p}(x)$.