We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define and study generalizations of simplicial volume over arbitrary seminormed rings with a focus on p-adic simplicial volumes. We investigate the dependence on the prime and establish homology bounds in terms of p-adic simplicial volumes. As the main examples, we compute the weightless and p-adic simplicial volumes of surfaces. This is based on an alternative way to calculate classical simplicial volume of surfaces without hyperbolic straightening and shows that surfaces satisfy mod p and p-adic approximation of simplicial volume.
We study solutions of difference equations in the rings of sequences and, more generally, solutions of equations with a monoid action in the ring of sequences indexed by the monoid. This framework includes, for example, difference equations on grids (for example, standard difference schemes) and difference equations in functions on words. On the universality side, we prove a version of strong Nullstellensatz for such difference equations under the assumption that the cardinality of the ground field is greater than the cardinality of the monoid and construct an example showing that this assumption cannot be omitted. On the undecidability side, we show that the following problems are undecidable:
A first-order theory is equational if every definable set is a Boolean combination of instances of equations, that is, of formulae such that the family of finite intersections of instances has the descending chain condition. Equationality is a strengthening of stability. We show the equationality of the theory of proper extensions of algebraically closed fields and of the theory of separably closed fields of arbitrary imperfection degree.
This paper deals with the following problem. Given a finite extension of fields $\mathbb{L}/\mathbb{K}$ and denoting the trace map from $\mathbb{L}$ to $\mathbb{K}$ by $\text{Tr}$, for which elements $z$ in $\mathbb{L}$, and $a$, $b$ in $\mathbb{K}$, is it possible to write $z$ as a product $xy$, where $x,y\in \mathbb{L}$ with $\text{Tr}(x)=a,\text{Tr}(y)=b$? We solve most of these problems for finite fields, with a complete solution when the degree of the extension is at least 5. We also have results for arbitrary fields and extensions of degrees 2, 3 or 4. We then apply our results to the study of perfect nonlinear functions, semifields, irreducible polynomials with prescribed coefficients, and a problem from finite geometry concerning the existence of certain disjoint linear sets.
Let ℚsymm be the compositum of all symmetric extensions of ℚ, i.e., the finite Galois extensions with Galois group isomorphic to Sn for some positive integer n, and let ℤsymm be the ring of integers inside ℚsymm. Then, TH(ℤsymm) is primitive recursively decidable.
It is proven that, for a wide range of integers s (2 < s < p − 2), the existence of a single wildly ramified odd prime l ≠ p leads to either the alternating group or the full symmetric group as Galois group of any irreducible trinomial Xp + aXs + b of prime degree p.
A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over $\mathbb{Q}$. More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $\mathbb{Q}_{p}(x)$.
Let $f(x)=x^{6}+ax^{4}+bx^{2}+c$ be an irreducible sextic polynomial with coefficients from a field $F$ of characteristic $\neq 2$, and let $g(x)=x^{3}+ax^{2}+bx+c$. We show how to identify the conjugacy class in $S_{6}$ of the Galois group of $f$ over $F$ using only the discriminants of $f$ and $g$ and the reducibility of a related sextic polynomial. We demonstrate that our method is useful for producing one-parameter families of even sextic polynomials with a specified Galois group.
In this article, we functorially associate definable sets to $k$-analytic curves, and definable maps to analytic morphisms between them, for a large class of $k$-analytic curves. Given a $k$-analytic curve $X$, our association allows us to have definable versions of several usual notions of Berkovich analytic geometry such as the branch emanating from a point and the residue curve at a point of type 2. We also characterize the definable subsets of the definable counterpart of $X$ and show that they satisfy a bijective relation with the radial subsets of $X$. As an application, we recover (and slightly extend) results of Temkin concerning the radiality of the set of points with a given prescribed multiplicity with respect to a morphism of $k$-analytic curves. In the case of the analytification of an algebraic curve, our construction can also be seen as an explicit version of Hrushovski and Loeser’s theorem on iso-definability of curves. However, our approach can also be applied to strictly $k$-affinoid curves and arbitrary morphisms between them, which are currently not in the scope of their setting.
A polynomial $f$ over a finite field $\mathbb{F}_{q}$ can be classified as a permutation polynomial by the Hermite–Dickson criterion, which consists of conditions on the powers $f^{e}$ for each $e$ from $1$ to $q-2$, as well as the existence of a unique solution to $f(x)=0$ in $\mathbb{F}_{q}$. Carlitz and Lutz gave a variant of the criterion. In this paper, we provide an alternate proof to the theorem of Carlitz and Lutz.
We give an algorithmic generalisation of Dickson’s method of classifying permutation polynomials (PPs) of a given degree $d$ over finite fields. Dickson’s idea is to formulate from Hermite’s criterion several polynomial equations satisfied by the coefficients of an arbitrary PP of degree $d$. Previous classifications of PPs of degree at most 6 were essentially deduced from manual analysis of these polynomial equations, but this approach is no longer viable for $d>6$. Our idea is to calculate some radicals of ideals generated by the polynomials, implemented by a computer algebra system. Our algorithms running in SageMath 8.6 on a personal computer work very fast to determine all PPs of degree 8 over an arbitrary finite field of odd order $q>8$. Such PPs exist if and only if $q\in \{11,13,19,23,27,29,31\}$ and are explicitly listed in normalised form.
The probability of successfully spending twice the same bitcoins is considered. A double-spending attack consists in issuing two transactions transferring the same bitcoins. The first transaction, from the fraudster to a merchant, is included in a block of the public chain. The second transaction, from the fraudster to himself, is recorded in a block that integrates a private chain, exact copy of the public chain up to substituting the fraudster-to-merchant transaction by the fraudster-to-fraudster transaction. The double-spending hack is completed once the private chain reaches the length of the public chain, in which case it replaces it. The growth of both chains are modelled by two independent counting processes. The probability distribution of the time at which the malicious chain catches up with the honest chain, or, equivalently, the time at which the two counting processes meet each other, is studied. The merchant is supposed to await the discovery of a given number of blocks after the one containing the transaction before delivering the goods. This grants a head start to the honest chain in the race against the dishonest chain.
We show that the Galois cohomology groups of $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ can be computed via the generalization of Herr’s complex to multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules. Using Tate duality and a pairing for multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules we extend this to analogues of the Iwasawa cohomology. We show that all $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ are overconvergent and, moreover, passing to overconvergent multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules is an equivalence of categories. Finally, we prove that the overconvergent Herr complex also computes the Galois cohomology groups.
A cyclotomic polynomial $\unicode[STIX]{x1D6F7}_{k}(x)$ is an essential cyclotomic factor of $f(x)\in \mathbb{Z}[x]$ if $\unicode[STIX]{x1D6F7}_{k}(x)\mid f(x)$ and every prime divisor of $k$ is less than or equal to the number of terms of $f.$ We show that if a monic polynomial with coefficients from $\{-1,0,1\}$ has a cyclotomic factor, then it has an essential cyclotomic factor. We use this result to prove a conjecture posed by Mercer [‘Newman polynomials, reducibility, and roots on the unit circle’, Integers12(4) (2012), 503–519].
is Hyers–Ulam stable if and only if the spectrum of the monodromy matrix Tq: = Aq−1 · · · A0 (i.e. the set of all its eigenvalues) does not intersect the unit circle Γ = {z ∈ ℂ: |z| = 1}, i.e. Tq is hyperbolic. Here (and in as follows) we let
0.2
(where a(t) and b(t) are ℂ-valued continuous and 1-periodic functions defined on ℝ) is Hyers–Ulam stable if and only if P(1) is hyperbolic; here P(t) denotes the solution of the first-order matrix 2-dimensional differential system
0.4
Suppose that $f(x)=x^{n}+A(Bx+C)^{m}\in \mathbb{Z}[x]$, with $n\geq 3$ and $1\leq m<n$, is irreducible over $\mathbb{Q}$. By explicitly calculating the discriminant of $f(x)$, we prove that, when $\gcd (n,mB)=C=1$, there exist infinitely many values of $A$ such that the set $\{1,\unicode[STIX]{x1D703},\unicode[STIX]{x1D703}^{2},\ldots ,\unicode[STIX]{x1D703}^{n-1}\}$ is an integral basis for the ring of integers of $\mathbb{Q}(\unicode[STIX]{x1D703})$, where $f(\unicode[STIX]{x1D703})=0$.
Given $f\in \mathbb{Z}[t]$ of positive degree, we investigate the existence of auxiliary polynomials $g\in \mathbb{Z}[t]$ for which $f(g(t))$ factors as a product of polynomials of small relative degree. One consequence of this work shows that for any quadratic polynomial $f\in \mathbb{Z}[t]$ and any $\unicode[STIX]{x1D700}>0$, there are infinitely many $n\in \mathbb{N}$ for which the largest prime factor of $f(n)$ is no larger than $n^{\unicode[STIX]{x1D700}}$.
We prove that for every sufficiently large integer $n$, the polynomial $1+x+x^{2}/11+x^{3}/111+\cdots +x^{n}/111\ldots 1$ is irreducible over the rationals, where the coefficient of $x^{k}$ for $1\leqslant k\leqslant n$ is the reciprocal of the decimal number consisting of $k$ digits which are each $1$. Similar results following from the same techniques are discussed.
In this paper, we will prove that any $\mathbb{A}^{3}$-form over a field $k$ of characteristic zero is trivial provided it has a locally nilpotent derivation satisfying certain properties. We will also show that the result of Kambayashi on the triviality of separable $\mathbb{A}^{2}$-forms over a field $k$ extends to $\mathbb{A}^{2}$-forms over any one-dimensional Noetherian domain containing $\mathbb{Q}$.