To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove general Dwork-type congruences for constant terms attached to tuples of Laurent polynomials. We apply this result to establishing arithmetic and p-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of hypergeometric and Knizhnik–Zamolodchikov (KZ) equations, solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application, we show that the simplest example of a p-adic KZ connection has an invariant line subbundle while its complex analog has no nontrivial subbundles due to the irreducibility of its monodromy representation.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
In this paper we develop a new technique for showing that a nonlinear algebraic differential equation is strongly minimal based on the recently developed notion of the degree of non-minimality of Freitag and Moosa. Our techniques are sufficient to show that generic order $h$ differential equations with non-constant coefficients are strongly minimal, answering a question of Poizat (1980).
The Hopf–Galois structures admitted by a Galois extension of fields $ L/K $ with Galois group G correspond bijectively with certain subgroups of $ \mathrm{Perm}(G) $. We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf–Galois structures, which we term ρ-conjugation. We study properties of this construction, with particular emphasis on the Hopf–Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct ρ-conjugates of a given Hopf–Galois structure is determined by the corresponding skew left brace, and that if $ H, H^{\prime} $ are Hopf algebras giving ρ-conjugate Hopf–Galois structures on a Galois extension of local or global fields $ L/K $ then an ambiguous ideal $ \mathfrak{B} $ of L is free over its associated order in H if and only if it is free over its associated order in Hʹ. We exhibit a variety of examples arising from interactions with existing constructions in the literature.
We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert’s theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.
For any real polynomial $p(x)$ of even degree k, Shapiro [‘Problems around polynomials: the good, the bad and the ugly$\ldots $’, Arnold Math. J.1(1) (2015), 91–99] proposed the conjecture that the sum of the number of real zeros of the two polynomials $(k-1)(p{'}(x))^{2}-kp(x)p{"}(x)$ and $p(x)$ is larger than 0. We prove that the conjecture is true except in one case: when the polynomial $p(x)$ has no real zeros, the derivative polynomial $p{'}(x)$ has one real simple zero, that is, $p{'}(x)=C(x)(x-w)$, where $C(x)$ is a polynomial with $C(w)\ne 0$, and the polynomial $(k-1)(C(x))^2(x-w)^{2}-kp(x)C{'}(x)(x-w)-kC(x)p(x)$ has no real zeros.
Let F be a subfield of the complex numbers and $f(x)=x^6+ax^5+bx^4+cx^3+bx^2+ax+1 \in F[x]$ an irreducible polynomial. We give an elementary characterisation of the Galois group of $f(x)$ as a transitive subgroup of $S_6$. The method involves determining whether three expressions involving a, b and c are perfect squares in F and whether a related quartic polynomial has a linear factor. As an application, we produce one-parameter families of reciprocal sextic polynomials with a specified Galois group.
Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of $\mathbb {Q}$ and to give a new proof of the vanishing of Massey triple products in Galois cohomology.
This paper consists of three parts: First, letting $b_1(z)$, $b_2(z)$, $p_1(z)$ and $p_2(z)$ be nonzero polynomials such that $p_1(z)$ and $p_2(z)$ have the same degree $k\geq 1$ and distinct leading coefficients $1$ and $\alpha$, respectively, we solve entire solutions of the Tumura–Clunie type differential equation $f^{n}+P(z,\,f)=b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}$, where $n\geq 2$ is an integer, $P(z,\,f)$ is a differential polynomial in $f$ of degree $\leq n-1$ with coefficients having polynomial growth. Second, we study the oscillation of the second-order differential equation $f''-[b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}]f=0$ and prove that $\alpha =[2(m+1)-1]/[2(m+1)]$ for some integer $m\geq 0$ if this equation admits a nontrivial solution such that $\lambda (f)<\infty$. This partially answers a question of Ishizaki. Finally, letting $b_2\not =0$ and $b_3$ be constants and $l$ and $s$ be relatively prime integers such that $l> s\geq 1$, we prove that $l=2$ if the equation $f''-(e^{lz}+b_2e^{sz}+b_3)f=0$ admits two linearly independent solutions $f_1$ and $f_2$ such that $\max \{\lambda (f_1),\,\lambda (f_2)\}<\infty$. In particular, we precisely characterize all solutions such that $\lambda (f)<\infty$ when $l=2$ and $l=4$.
We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math.31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$. We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$, and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$.
We develop a sheaf cohomology theory of algebraic varieties over an algebraically closed nontrivially valued nonarchimedean field K based on Hrushovski-Loeser’s stable completion. In parallel, we develop a sheaf cohomology of definable subsets in o-minimal expansions of the tropical semi-group $\Gamma _{\infty }$, where $\Gamma $ denotes the value group of K. For quasi-projective varieties, both cohomologies are strongly related by a deformation retraction of the stable completion homeomorphic to a definable subset of $\Gamma _{\infty }$. In both contexts, we show that the corresponding cohomology theory satisfies the Eilenberg-Steenrod axioms, finiteness and invariance, and we provide natural bounds of cohomological dimension in each case. As an application, we show that there are finitely many isomorphism types of cohomology groups in definable families. Moreover, due to the strong relation between the stable completion of an algebraic variety and its analytification in the sense of V. Berkovich, we recover and extend results on the singular cohomology of the analytification of algebraic varieties concerning finiteness and invariance.
We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the degree constraints on polynomials to be relaxed.
A multivariate, formal power series over a field K is a Bézivin series if all of its coefficients can be expressed as a sum of at most r elements from a finitely generated subgroup $G \le K^*$; it is a Pólya series if one can take $r=1$. We give explicit structural descriptions of D-finite Bézivin series and D-finite Pólya series over fields of characteristic $0$, thus extending classical results of Pólya and Bézivin to the multivariate setting.
We prove new cases of the Inverse Galois Problem by considering the residual Galois representations arising from a fixed newform. Specific choices of weight $3$ newforms will show that there are Galois extensions of ${\mathbb Q}$ with Galois group $\operatorname {PSL}_2({\mathbb F}_p)$ for all primes p and $\operatorname {PSL}_2({\mathbb F}_{p^3})$ for all odd primes $p \equiv \pm 2, \pm 3, \pm 4, \pm 6 \ \pmod {13}$.
We characterize the noncommutative Aleksandrov–Clark measures and the minimal realization formulas of contractive and, in particular, isometric noncommutative rational multipliers of the Fock space. Here, the full Fock space over $\mathbb {C} ^d$ is defined as the Hilbert space of square-summable power series in several noncommuting (NC) formal variables, and we interpret this space as the noncommutative and multivariable analogue of the Hardy space of square-summable Taylor series in the complex unit disk. We further obtain analogues of several classical results in Aleksandrov–Clark measure theory for noncommutative and contractive rational multipliers.
Noncommutative measures are defined as positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz algebra, the unital $C^*$-algebra generated by the left creation operators on the full Fock space. Our results demonstrate that there is a fundamental relationship between NC Hardy space theory, representation theory of the Cuntz–Toeplitz and Cuntz algebras, and the emerging field of noncommutative rational functions.
Let $\mathcal {N}$ be a non-Archimedean-ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order, and whose Hahn group is Archimedean. In this paper, we first review the properties of weakly locally uniformly differentiable (WLUD) functions, $k$ times weakly locally uniformly differentiable (WLUD$^{k}$) functions and WLUD$^{\infty }$ functions at a point or on an open subset of $\mathcal {N}$. Then, we show under what conditions a WLUD$^{\infty }$ function at a point $x_0\in \mathcal {N}$ is analytic in an interval around $x_0$, that is, it has a convergent Taylor series at any point in that interval. We generalize the concepts of WLUD$^{k}$ and WLUD$^{\infty }$ to functions from $\mathcal {N}^{n}$ to $\mathcal {N}$, for any $n\in \mathbb {N}$. Then, we formulate conditions under which a WLUD$^{\infty }$ function at a point $\boldsymbol {x_0} \in \mathcal {N}^{n}$ is analytic at that point.
We show that the theory of Galois actions of a torsion Abelian group A is companionable if and only if, for each prime p, the p-primary part of A is either finite or it coincides with the Prüfer p-group. We also provide a model-theoretic description of the model companions we obtain.
Every discrete definable subset of a closed asymptotic couple with ordered scalar field ${\boldsymbol {k}}$ is shown to be contained in a finite-dimensional ${\boldsymbol {k}}$-linear subspace of that couple. It follows that the differential-valued field $\mathbb {T}$ of transseries induces more structure on its value group than what is definable in its asymptotic couple equipped with its scalar multiplication by real numbers, where this asymptotic couple is construed as a two-sorted structure with $\mathbb {R}$ as the underlying set for the second sort.
Let $F_{2^n}$ be the Frobenius group of degree $2^n$ and of order $2^n ( 2^n-1)$ with $n \ge 4$. We show that if $K/\mathbb {Q} $ is a Galois extension whose Galois group is isomorphic to $F_{2^n}$, then there are $\dfrac {2^{n-1} +(-1)^n }{3}$ intermediate fields of $K/\mathbb {Q} $ of degree $4 (2^n-1)$ such that they are not conjugate over $\mathbb {Q}$ but arithmetically equivalent over $\mathbb {Q}$. We also give an explicit method to construct these arithmetically equivalent fields.
We present a framework for tame geometry on Henselian valued fields, which we call Hensel minimality. In the spirit of o-minimality, which is key to real geometry and several diophantine applications, we develop geometric results and applications for Hensel minimal structures that were previously known only under stronger, less axiomatic assumptions. We show the existence of t-stratifications in Hensel minimal structures and Taylor approximation results that are key to non-Archimedean versions of Pila–Wilkie point counting, Yomdin’s parameterization results and motivic integration. In this first paper, we work in equi-characteristic zero; in the sequel paper, we develop the mixed characteristic case and a diophantine application.