To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we consider the integral functionals of the general epidemic model up to its extinction. We develop a new approach to determine the exact Laplace transform of such integrals. In particular, we obtain the Laplace transform of the duration of the epidemic T, the final susceptible size ST, the area under the trajectory of the infectives AT, and the area under the trajectory of the susceptibles BT. The method relies on the construction of a family of martingales and allows us to solve simple recursive relations for the involved parameters. The Laplace transforms are then expanded in terms of a special class of polynomials. The analysis is generalized in part to Markovian epidemic processes with arbitrary state-dependent rates.
The algebraic proof of the fundamental theorem of algebra uses two facts about real numbers. First, every polynomial with odd degree and real coefficients has a real root. Second, every nonnegative real number has a square root. Shipman [‘Improving the fundamental theorem of algebra’, Math. Intelligencer29(4) (2007), 9–14] showed that the assumption about odd degree polynomials is stronger than necessary; any field in which polynomials of prime degree have roots is algebraically closed. In this paper, we give a simpler proof of this result of Shipman.
Li introduced the normalized volume of a valuation due to its relation to K-semistability. He conjectured that over a Kawamata log terminal (klt) singularity there exists a valuation with smallest normalized volume. We prove this conjecture and give an explicit example to show that such a valuation need not be divisorial.
Let $K$ be a finitely generated extension of $\mathbb{Q}$, and let $A$ be a nonzero abelian variety over $K$. Let $\tilde{K}$ be the algebraic closure of $K$, and let $\text{Gal}(K)=\text{Gal}(\tilde{K}/K)$ be the absolute Galois group of $K$ equipped with its Haar measure. For each $\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, let $\tilde{K}(\unicode[STIX]{x1D70E})$ be the fixed field of $\unicode[STIX]{x1D70E}$ in $\tilde{K}$. We prove that for almost all $\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, there exist infinitely many prime numbers $l$ such that $A$ has a nonzero $\tilde{K}(\unicode[STIX]{x1D70E})$-rational point of order $l$. This completes the proof of a conjecture of Geyer–Jarden from 1978 in characteristic 0.
We prove a positive characteristic version of Ax’s theorem on the intersection of an algebraic subvariety and an analytic subgroup of an algebraic group [Ax, Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups, Amer. J. Math.94 (1972), 1195–1204]. Our result is stated in a more general context of a formal map between an algebraic variety and an algebraic group. We derive transcendence results of Ax–Schanuel type.
This is an addendum to a recent paper by Zaïmi, Bertin and Aljouiee [‘On number fields without a unit primitive element’, Bull. Aust. Math. Soc.93 (2016), 420–432], giving the answer to a question asked in that paper, together with some historical connections.
We lay the groundwork in this first installment of a series of papers aimed at developing a theory of Hrushovski–Kazhdan style motivic integration for certain types of nonarchimedean $o$-minimal fields, namely power-bounded $T$-convex valued fields, and closely related structures. The main result of the present paper is a canonical homomorphism between the Grothendieck semirings of certain categories of definable sets that are associated with the $\text{VF}$-sort and the $\text{RV}$-sort of the language ${\mathcal{L}}_{T\text{RV}}$. Many aspects of this homomorphism can be described explicitly. Since these categories do not carry volume forms, the formal groupification of the said homomorphism is understood as a universal additive invariant or a generalized Euler characteristic. It admits not just one, but two specializations to $\unicode[STIX]{x2124}$. The overall structure of the construction is modeled on that of the original Hrushovski–Kazhdan construction.
We correct some statements and proofs of K. S. Kedlaya [Local and global structure of connections on nonarchimedean curves, Compos. Math. 151 (2015), 1096–1156]. To summarize, Proposition 1.1.2 is false as written, and we provide here a corrected statement and proof (and a corresponding modification of Remark 1.1.3); the proofs of Theorem 2.3.17 and Theorem 3.8.16, which rely on Proposition 1.1.2, are corrected accordingly; some missing details in the proofs of Theorem 3.4.20 and Theorem 3.4.22 are filled in; and a few much more minor corrections are recorded.
For any integer $m\neq 0$, we prove that $f(x)=x^{9}+9mx^{6}+192m^{3}$ is irreducible over $\mathbb{Q}$ and that the Galois group of $f(x)$ over $\mathbb{Q}$ is the dihedral group of order 18. Moreover, we show that for infinitely many values of $m$, the splitting fields for $f(x)$ are distinct.
We generalize the $\mathbb{Z}/p$metabelian birational $p$-adic section conjecture for curves, as introduced and proved in Pop [On the birational$p$-adic section conjecture, Compos. Math. 146 (2010), 621–637], to all complete smooth varieties, provided $p>2$. The condition $p>2$ seems to be of technical nature only, and might be removable.
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
In 2013, Weintraub gave a generalization of the classical Eisenstein irreducibility criterion in an attempt to correct a false claim made by Eisenstein. Using a different approach, we prove Weintraub's result with a weaker hypothesis in a more general setup that leads to an extension of the generalized Schönemann irreducibility criterion for polynomials with coefficients in arbitrary valued fields.
We study the question of which Henselian fields admit definable Henselian valuations (with or without parameters). We show that every field that admits a Henselian valuation with non-divisible value group admits a parameter-definable (non-trivial) Henselian valuation. In equicharacteristic 0, we give a complete characterization of Henselian fields admitting a parameter-definable (non-trivial) Henselian valuation. We also obtain partial characterization results of fields admitting -definable (non-trivial) Henselian valuations. We then draw some Galois-theoretic conclusions from our results.
Let $k$ be field of characteristic zero. Let $f\in k[X,Y]$ be a nonconstant polynomial. We prove that the space of differential (formal) deformations of any formal general solution of the associated ordinary differential equation $f(y^{\prime },y)=0$ is isomorphic to the formal disc $\text{Spf}(k[[Z]])$.
Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.
Let $P\in \mathbb{F}_{2}[z]$ be such that $P(0)=1$ and degree $(P)\geq 1$. Nicolas et al. [‘On the parity of additive representation functions’, J. Number Theory73 (1998), 292–317] proved that there exists a unique subset ${\mathcal{A}}={\mathcal{A}}(P)$ of $\mathbb{N}$ such that $\sum _{n\geq 0}p({\mathcal{A}},n)z^{n}\equiv P(z)~\text{mod}\,2$, where $p({\mathcal{A}},n)$ is the number of partitions of $n$ with parts in ${\mathcal{A}}$. Let $m$ be an odd positive integer and let ${\it\chi}({\mathcal{A}},.)$ be the characteristic function of the set ${\mathcal{A}}$. Finding the elements of the set ${\mathcal{A}}$ of the form $2^{k}m$, $k\geq 0$, is closely related to the $2$-adic integer $S({\mathcal{A}},m)={\it\chi}({\mathcal{A}},m)+2{\it\chi}({\mathcal{A}},2m)+4{\it\chi}({\mathcal{A}},4m)+\cdots =\sum _{k=0}^{\infty }2^{k}{\it\chi}({\mathcal{A}},2^{k}m)$, which has been shown to be an algebraic number. Let $G_{m}$ be the minimal polynomial of $S({\mathcal{A}},m)$. In precedent works there were treated the case $P$ irreducible of odd prime order $p$. In this setting, taking $p=1+ef$, where $f$ is the order of $2$ modulo $p$, explicit determinations of the coefficients of $G_{m}$ have been made for $e=2$ and 3. In this paper, we treat the case $e=4$ and use the cyclotomic numbers to make explicit $G_{m}$.
We show that Ribet sections are the only obstruction to the validity of the relative Manin–Mumford conjecture for one-dimensional families of semi-abelian surfaces. Applications include special cases of the Zilber–Pink conjecture for curves in a mixed Shimura variety of dimension 4, as well as the study of polynomial Pell equations with non-separable discriminants.
We study transcendence properties of certain infinite products of cyclotomic polynomials. In particular, we determine all cases in which the product is hypertranscendental. We then use various results from Mahler’s transcendence method to obtain algebraic independence results on such functions and their values.
For any number field we calculate the exact proportion of rational numbers which are everywhere locally a norm but not globally a norm from the number field.