To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any integer $m\neq 0$, we prove that $f(x)=x^{9}+9mx^{6}+192m^{3}$ is irreducible over $\mathbb{Q}$ and that the Galois group of $f(x)$ over $\mathbb{Q}$ is the dihedral group of order 18. Moreover, we show that for infinitely many values of $m$, the splitting fields for $f(x)$ are distinct.
We generalize the $\mathbb{Z}/p$metabelian birational $p$-adic section conjecture for curves, as introduced and proved in Pop [On the birational$p$-adic section conjecture, Compos. Math. 146 (2010), 621–637], to all complete smooth varieties, provided $p>2$. The condition $p>2$ seems to be of technical nature only, and might be removable.
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
In 2013, Weintraub gave a generalization of the classical Eisenstein irreducibility criterion in an attempt to correct a false claim made by Eisenstein. Using a different approach, we prove Weintraub's result with a weaker hypothesis in a more general setup that leads to an extension of the generalized Schönemann irreducibility criterion for polynomials with coefficients in arbitrary valued fields.
We study the question of which Henselian fields admit definable Henselian valuations (with or without parameters). We show that every field that admits a Henselian valuation with non-divisible value group admits a parameter-definable (non-trivial) Henselian valuation. In equicharacteristic 0, we give a complete characterization of Henselian fields admitting a parameter-definable (non-trivial) Henselian valuation. We also obtain partial characterization results of fields admitting -definable (non-trivial) Henselian valuations. We then draw some Galois-theoretic conclusions from our results.
Let $k$ be field of characteristic zero. Let $f\in k[X,Y]$ be a nonconstant polynomial. We prove that the space of differential (formal) deformations of any formal general solution of the associated ordinary differential equation $f(y^{\prime },y)=0$ is isomorphic to the formal disc $\text{Spf}(k[[Z]])$.
Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.
Let $P\in \mathbb{F}_{2}[z]$ be such that $P(0)=1$ and degree $(P)\geq 1$. Nicolas et al. [‘On the parity of additive representation functions’, J. Number Theory73 (1998), 292–317] proved that there exists a unique subset ${\mathcal{A}}={\mathcal{A}}(P)$ of $\mathbb{N}$ such that $\sum _{n\geq 0}p({\mathcal{A}},n)z^{n}\equiv P(z)~\text{mod}\,2$, where $p({\mathcal{A}},n)$ is the number of partitions of $n$ with parts in ${\mathcal{A}}$. Let $m$ be an odd positive integer and let ${\it\chi}({\mathcal{A}},.)$ be the characteristic function of the set ${\mathcal{A}}$. Finding the elements of the set ${\mathcal{A}}$ of the form $2^{k}m$, $k\geq 0$, is closely related to the $2$-adic integer $S({\mathcal{A}},m)={\it\chi}({\mathcal{A}},m)+2{\it\chi}({\mathcal{A}},2m)+4{\it\chi}({\mathcal{A}},4m)+\cdots =\sum _{k=0}^{\infty }2^{k}{\it\chi}({\mathcal{A}},2^{k}m)$, which has been shown to be an algebraic number. Let $G_{m}$ be the minimal polynomial of $S({\mathcal{A}},m)$. In precedent works there were treated the case $P$ irreducible of odd prime order $p$. In this setting, taking $p=1+ef$, where $f$ is the order of $2$ modulo $p$, explicit determinations of the coefficients of $G_{m}$ have been made for $e=2$ and 3. In this paper, we treat the case $e=4$ and use the cyclotomic numbers to make explicit $G_{m}$.
We show that Ribet sections are the only obstruction to the validity of the relative Manin–Mumford conjecture for one-dimensional families of semi-abelian surfaces. Applications include special cases of the Zilber–Pink conjecture for curves in a mixed Shimura variety of dimension 4, as well as the study of polynomial Pell equations with non-separable discriminants.
We study transcendence properties of certain infinite products of cyclotomic polynomials. In particular, we determine all cases in which the product is hypertranscendental. We then use various results from Mahler’s transcendence method to obtain algebraic independence results on such functions and their values.
For any number field we calculate the exact proportion of rational numbers which are everywhere locally a norm but not globally a norm from the number field.
A direct application of Zorn’s lemma gives that every Lipschitz map $f:X\subset \mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$ has an extension to a Lipschitz map $\widetilde{f}:\mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$. This is analogous to, but easier than, Kirszbraun’s theorem about the existence of Lipschitz extensions of Lipschitz maps $S\subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{\ell }$. Recently, Fischer and Aschenbrenner obtained a definable version of Kirszbraun’s theorem. In this paper, we prove in the $p$-adic context that $\widetilde{f}$ can be taken definable when $f$ is definable, where definable means semi-algebraic or subanalytic (or some intermediary notion). We proceed by proving the existence of definable Lipschitz retractions of $\mathbb{Q}_{p}^{n}$ to the topological closure of $X$ when $X$ is definable.
We prove field quantifier elimination for valued fields endowed with both an analytic structure that is $\unicode[STIX]{x1D70E}$-Henselian and an automorphism that is $\unicode[STIX]{x1D70E}$-Henselian. From this result we can deduce various Ax–Kochen–Eršov type results with respect to completeness and the independence property. The main example we are interested in is the field of Witt vectors on the algebraic closure of $\mathbb{F}_{p}$ endowed with its natural analytic structure and the lifting of the Frobenius. It turns out we can give a (reasonable) axiomatization of its first-order theory and that this theory does not have the independence property.
Conservation laws provide important constraints on the solutions of partial differential equations (PDEs), therefore it is important to preserve them when discretizing such equations. In this paper, a new systematic method for discretizing a PDE, so as to preserve the local form of multiple conservation laws, is presented. The technique, which uses symbolic computation, is applied to the Korteweg–de Vries (KdV) equation to find novel explicit and implicit schemes that have finite difference analogues of its first and second conservation laws and its first and third conservation laws. The resulting schemes are numerically compared with a multisymplectic scheme.
We extend and apply the Galois theory of linear differential equations equipped with the action of an endomorphism. The Galois groups in this Galois theory are difference algebraic groups, and we use structure theorems for these groups to characterize the possible difference algebraic relations among solutions of linear differential equations. This yields tools to show that certain special functions are difference transcendent. One of our main results is a characterization of discrete integrability of linear differential equations with almost simple usual Galois group, based on a structure theorem for the Zariski dense difference algebraic subgroups of almost simple algebraic groups, which is a schematic version, in characteristic zero, of a result due to Z. Chatzidakis, E. Hrushovski, and Y. Peterzil.
We show that the cyclic and epicyclic categories which play a key role in the encoding of cyclic homology and the lambda operations, are obtained from projective geometry in characteristic one over the infinite semifield of max-plus integers ℤmax. Finite-dimensional vector spaces are replaced by modules defined by restriction of scalars from the one-dimensional free module, using the Frobenius endomorphisms of ℤmax. The associated projective spaces are finite and provide a mathematically consistent interpretation of Tits's original idea of a geometry over the absolute point. The self-duality of the cyclic category and the cyclic descent number of permutations both acquire a geometric meaning.
Consider a vector bundle with connection on a $p$-adic analytic curve in the sense of Berkovich. We collect some improvements and refinements of recent results on the structure of such connections, and on the convergence of local horizontal sections. This builds on work from the author’s 2010 book and on subsequent improvements by Baldassarri and by Poineau and Pulita. One key result exclusive to this paper is that the convergence polygon of a connection is locally constant around every type 4 point.
This paper considers algebraic independence and hypertranscendence of functions satisfying Mahler-type functional equations $af(z^{r})=f(z)+R(z)$, where $a$ is a nonzero complex number, $r$ an integer greater than 1, and $R(z)$ a rational function. Well-known results from the scope of Mahler’s method then imply algebraic independence over the rationals of the values of these functions at algebraic points. As an application, algebraic independence results on reciprocal sums of Fibonacci and Lucas numbers are obtained.
We prove the existence of certain rationally rigid triples in ${E}_{8}(p)$ for good primes $p$ (i.e. $p>5$) thereby showing that these groups occur as Galois groups over the field of rational numbers. We show that these triples arise from rigid triples in the algebraic group and prove that they generate an interesting subgroup in characteristic zero. As a byproduct of the proof, we derive a remarkable symmetry between the character table of a finite reductive group and that of its dual group. We also give a short list of possible overgroups of regular unipotent elements in simple exceptional groups.