We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a ∇-module M over the ring K[[x]]0 of bounded functions over a p-adic local field K we define the notion of special and generic log-growth filtrations on the base of the power series development of the solutions and horizontal sections. Moreover, if M also admits a Frobenius structure then it is endowed with generic and special Frobenius slope filtrations. We will show that in the case of M a ϕ–∇-module of rank 2, the Frobenius polygon for M and the log-growth polygon for its dual, Mv, coincide, this is proved by showing explicit relationships between the filtrations. This will lead us to formulate some conjectural links between the behaviours of the filtrations arising from the log-growth and Frobenius structures of the differential module. This coincidence between the two polygons was only known for the hypergeometric cases by Dwork.
Natural sufficient conditions for a polynomial to have a local minimum at a point are considered. These conditions tend to hold with probability 1. It is shown that polynomials satisfying these conditions at each minimum point have nice presentations in terms of sums of squares. Applications are given to optimization on a compact set and also to global optimization. In many cases, there are degree bounds for such presentations. These bounds are of theoretical interest, but they appear to be too large to be of much practical use at present. In the final section, other more concrete degree bounds are obtained which ensure at least that the feasible set of solutions is not empty.
We draw a connection between the model-theoretic notions of modularity (or one-basedness), orthogonality and internality, as applied to difference fields, and questions of descent in in algebraic dynamics. In particular we prove in any dimension a strong dynamical version of Northcott's theorem for function fields, answering a question of Szpiro and Tucker and generalizing a theorem of Baker's for the projective line.
The paper comes in three parts. This first part contains an exposition some of the main results of the model theory of difference fields, and their immediate connection to questions of descent in algebraic dynamics. We present the model-theoretic notion of internality in a context that does not require a universal domain with quantifier-elimination. We also note a version of canonical heights that applies well beyond polarized algebraic dynamics. Part II sharpens the structure theory to arbitrary base fields and constructible maps where in part I we emphasize finite base change and correspondences. Part III will include precise structure theorems related to the Galois theory considered here, and will enable a sharpening of the descent results for non-modular dynamics.
This second part of the paper strengthens the descent theory described in the first part torational maps and arbitrary base fields. We obtain in particular a decomposition of any difference field extension into a tower of finite, field-internal and one-based difference field extensions. This is needed in order to obtain the ‘dynamical Northcott’ Theorem 1.11 of Part I in sharp form.
Dichotomies in various conjectures from algebraic geometry are in fact occurrences of the dichotomy among Zariski structures. This is what Hrushovski showed and which enabled him to solve, positively, the geometric Mordell–Lang conjecture in positive characteristic. Are we able now to avoid this use of Zariski structures? Pillay and Ziegler have given a direct proof that works for semi-abelian varieties they called ‘very thin’, which include the ordinary abelian varieties. But it does not apply in all generality: we describe here an abelian variety which is not very thin. More generally, we consider from a model-theoretical point of view several questions about the fields of definition of semi-abelian varieties.
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.
We develop the theory of p-adic confluence of q-difference equations. The main result is the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential equation if and only if it is a solution of a q-difference equation. This fact implies an equivalence, called confluence, between the category of differential equations and those of q-difference equations. We develop this theory by introducing a category of sheaves on the disk D−(1,1), for which the stalk at 1 is a differential equation, the stalk at q isa q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a mixed object, formed by a differential equation and an action of σξ.
This paper deals with criteria of algebraic independence for the derivatives of solutions of diagonal difference systems. The key idea consists in deriving from the commutativity of the differentiation and difference operators a sequence of iterated extensions of the original difference module, thereby setting the problem in the framework of difference Galois theory and finally reducing it to an exercise in linear algebra on the group of divisors of the involved elliptic curve or torus.
This is a study of the asymptotic behaviour of solutions of p-adic linear differential equations near the boundary of their convergence disks. We prove Dwork’s conjecture on the logarithmic growth of solutions in generic versus special disks.
We develop and study the epsilon factor of a ‘local system’ of p-adic coefficients over the spectrum of a complete discrete valuation field K with finite residue field of characteristic p>0. In the equal characteristic case, we define the epsilon factor of an overconvergent F-isocrystal over Spec(K), using the p-adic monodromy theorem. We conjecture a global formula, the p-adic product formula, analogous to Deligne’s formula for étale ℓ-adic sheaves proved by Laumon, which explains the importance of this local invariant. Namely, for an overconvergent F-isocrystal over an open subset of a projective smooth curve X, the constant of the functional equation of the L-series is expressed as a product of the local epsilon factors at the points of X. We prove the conjecture for rank-one overconvergent F-isocrystals and for finite unit-root overconvergent F-isocrystals. In the mixed characteristic case, we study the behavior of the epsilon factor by deformation to the field of norms.
Let υ be a Henselian valuation of arbitrary rank of a field K, and let ῡ be the (unique) extension of v to a fixed algebraic closure of K. For an element α ∈ \K, a chain α = α0, α1,…,αr of elements of , such that αi is of minimum degree over K with the property that ῡ(αi−1 − αi) = sup{ῡ(αi−1 − β) | [K (β) : K] < [K (αi−1) : K]} and that αr ∈ K, is called a saturated distinguished chain for α with respect to (K, υ). The notion of a saturated distinguished chain has been used to obtain results about the irreducible polynomials over any complete discrete rank one valued field K and to determine various arithmetic and metric invariants associated to elements of (cf. [J. Number Theory, 52 (1995), 98–118.] and [J. Algebra, 266 (2003), 14–26]). In this paper, a method is described of constructing a saturated distinguished chain for α, and also determining explicitly some invariants associated to α, when the degree of the extension K (α)/K is not divisible by the characteristic of the residue field of υ.
In the complex domain, one can integrate (solve) holomorphic ordinary differential equations (ODEs) near a non-singular point. We study the existence of solutions in the case of a positive characteristic base field k which is complete with respect to a non-Archimedean absolute value. ODEs are substituted by modules over a ring of analytic functions endowed with an action of all differential operators. The monodromy groups associated to the corresponding category are computed.
In this paper we give new results concerning the maximal regularity of the strict solution of an abstract second-order differential equation, with non-homogeneous boundary conditions of Dirichlet type, and set in an unbounded interval. The right-hand term of the equation is a Hölder continuous function.
We consider a discrete-time risk model which describes the evolution of the reserves of an insurance company at periodic dates fixed in advance. The amount of loss per unit of time corresponds to independent and identically distributed random variables with arithmetic distribution, and the process of the receipt of premiums is assumed to be deterministic, nonnegative but not uniform (instead of being constant and equal to 1 as in the standard, compound binomial model). For this model, we determine the probability of ruin (or of non-ruin), as well as the distribution of the severity of the eventual ruin, with some finite horizon. A compact and efficient exact expression is found by bringing up-to-date a generalised family of Appell polynomials. The method used is illustrated with some numerical examples.
We continue the study of the discrete-time risk model introduced by Picard et al. (2003). The cumulative loss process (St)t∊ℕ has independent and stationary increments, the increments per unit of time having nonnegative integer values with distribution {ai, i ∊ ℕ and mean ā. The premium receipt process (ck)k∊ℕ is deterministic, nonnegative and nonuniform; in addition, we assume it to be regular in order for there to exist a constant c > ā such that the deviation is bounded as the time t varies. We are interested in whether or not ruin occurs within a finite time. If T is the time of ruin, we obtain P(T = ∞) as the limit of P(T > t) as t → ∞, firstly in the particular case where c = 1/d for some positive d ∊ ℕ, and then in the general case for positive c under the condition that a0 > ½.
In this paper, further insight is obtained into the earlier approach of studying residually transcendental extensions of a valuation v of a field K to a simple transcendental extension K(x) of K by means of minimal pairs, thereby introducing new invariants corresponding to any element of an algebraic closure of K. It is also shown that these invariants are of independent interest as well. A characterization of those elements a belonging to is given such that there exists a minimal pair (a, δ) for some δ in the divisible closure of the value group of v.
Let v be a Henselian valuation of any rank of a field K and its unique prolongation to a fixed algebraic closure of K having value group . For any subfield L of , let R(L) denote the residue field of the valuation obtained by restricting to L. Using the canonical homomorphism from the valuation ring of v onto its residue field R(K), one can lift any monic irreducible polynomial with coefficients in R(K) to yield a monic irreducible polynomial with coefficients in K. In an attempt to generalize this concept, Popescu and Zaharescu introduced the notion of lifting with respect to a (K, v)-minimal pair (α, δ) belonging to × . As in the case of usual lifting, a given monic irreducible polynomial Q(y) belonging to R(K(α))[y] gives rise to several monic irreducible polynomials over K which are obtained by lifting with respect to a fixed (K, v)-minimal pair (α, δ). If F, F1 are two such lifted polynomials with coefficients in K having roots θ, θ1, respectively, then it is proved in the present paper that in case (K, v) is a tame field, it is shown that K(θ) and K(θ1) are indeed K-isomorphic.
A well-known result of Ehrenfeucht states that a difference polynomial f(X)-g(Y) in two variables X, Y with complex coefficients is irreducible if the degrees of f and g are coprime. Panaitopol and Stefǎnescu generalized this result, by giving an irreducibility condition for a larger class of polynomials called “generalized difference polynomials”. This paper gives an irreducibility criterion for more general polynomials, of which the criterion of Panaitopol and Stefǎnescu is a special case.
Let E be a local field, i.e., a field which is complete with respect to a rank one discrete valuation υ (we do not require any finiteness condition on the residue class field of E). Let f(X) be a polynomial in one variable, with coefficients in E. It is well known [4, 6, 9, 11, 13] that the Newton polygon method allows us to gather information about the factorization of f(X). This method consists of attaching to each side S of a Newton polygon of f(X) a factor (not necessarily irreducible) of f(X), the degree of which is the length of the horizontal projection of S.
Nonsingular derivations of modular Lie algebras which have finite multiplicative order play a role in the coclass theory for pro-p groups and Lie algebras. We study the orders of nonsingular derivations of finite-dimensional non-nilpotent Lie algebras of characteristic p > 0. The methods are essentially number-theoretic.