We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show how the techniques of Voevodsky’s proof of the Milnor conjecture and the Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used to study counterexamples to the classical Lüroth problem. By generalizing a method due to Peyre, we produce for any prime number $\ell $ and any integer $n\geq 2$, a rationally connected, non-rational variety for which non-rationality is detected by a non-trivial degree $n$ unramified étale cohomology class with $\ell $-torsion coefficients. When $\ell = 2$, the varieties that are constructed are furthermore unirational and non-rationality cannot be detected by a torsion unramified étale cohomology class of lower degree.
Let $k$ be a locally compact complete field with respect to a discrete valuation $v$. Let $ \mathcal{O} $ be the valuation ring, $\mathfrak{m}$ the maximal ideal and $F(x)\in \mathcal{O} [x] $ a monic separable polynomial of degree $n$. Let $\delta = v(\mathrm{Disc} (F))$. The Montes algorithm computes an OM factorization of $F$. The single-factor lifting algorithm derives from this data a factorization of $F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$, for a prescribed precision $\nu $. In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of $O({n}^{2+ \epsilon } + {n}^{1+ \epsilon } {\delta }^{2+ \epsilon } + {n}^{2} {\nu }^{1+ \epsilon } )$ word operations for the complexity of the computation of a factorization of $F(\mathrm{mod~} {\mathfrak{m}}^{\nu } )$, assuming that the residue field of $k$ is small.
Let ${ \mathbb{F} }_{q} $ be the finite field of characteristic $p$ containing $q= {p}^{r} $ elements and $f(x)= a{x}^{n} + {x}^{m} $, a binomial with coefficients in this field. If some conditions on the greatest common divisor of $n- m$ and $q- 1$ are satisfied then this polynomial does not permute the elements of the field. We prove in particular that if $f(x)= a{x}^{n} + {x}^{m} $ permutes ${ \mathbb{F} }_{p} $, where $n\gt m\gt 0$ and $a\in { \mathbb{F} }_{p}^{\ast } $, then $p- 1\leq (d- 1)d$, where $d= \gcd (n- m, p- 1)$, and that this bound of $p$, in terms of $d$ only, is sharp. We show as well how to obtain in certain cases a permutation binomial over a subfield of ${ \mathbb{F} }_{q} $ from a permutation binomial over ${ \mathbb{F} }_{q} $.
It is well known to be impossible to trisect an arbitrary angle and duplicate an arbitrary cube by a ruler and a compass. On the other hand, it is known from ancient times that these constructions can be performed when the use of several conic curves is allowed. In this paper, we prove that any point constructible from conics can be constructed using a ruler and a compass, together with a single fixed nondegenerate conic different from a circle.
Multirings are objects like rings but with multi-valued addition. In the present paper we extend results of E. Becker and others concerning orderings of higher level on fields and rings to orderings of higher level on hyperfields and multirings and, in the process of doing this, we establish higher level analogs of the results previously obtained by the second author. In particular, we introduce a class of multirings called ℓ-real reduced multirings, define a natural reflection A ⇝ Qℓ-red(A) from the category of multirings satisfying to the full subcategory of ℓ-real reduced multirings, and provide an elementary first-order description of these objects. The relationship between ℓ-real reduced hyperfields and the spaces of signatures defined by Mulcahy and Powers is also examined.
In this paper we solve the equation f(g(x))=f(x)hm(x) where f(x), g(x) and h(x) are unknown polynomials with coefficients in an arbitrary field K, f(x) is nonconstant and separable, deg g≥2, the polynomial g(x) has nonzero derivative g′(x)≠0in K[x]and the integer m≥2is not divisible by the characteristic of the field K. We prove that this equation has no solutions if deg f≥3 . If deg f=2 , we prove that m=2and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine applications for such polynomials f(x) , g(x) , h(x)with coefficients in ℚ or ℤ are considered in the context of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f(r) , r∈ℚ.
Let R be a domain contained in a rank-1 valuation ring of its quotient field. Let R⟦X⟧ be the ring of formal power series over R, and let F be the quotient field of R⟦X⟧. We prove that F is Hilbertian. This resolves and generalizes an open problem of Jarden, and allows to generalize previous Galois-theoretic results over fields of power series.
Let K be a complete discrete valuation field of mixed characteristic (0,p), with possibly imperfect residue field. We prove a Hasse–Arf theorem for the arithmetic ramification filtrations on GK, except possibly in the absolutely unramified and non-logarithmic case, or the p=2 and logarithmic case. As an application, we obtain a Hasse–Arf theorem for filtrations on finite flat group schemes over 𝒪K.
Let Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.
We refine a result of Dubickas on the maximal multiplicity of the roots of a complex polynomial, and obtain several separability criteria for complex polynomials with large leading coefficient. We also give p-adic analogous results for polynomials with integer coefficients.
We consider valued fields with a value-preserving automorphism and improve on model-theoretic results by Bélair, Macintyre and Scanlon on these objects by dropping assumptions on the residue difference field. In the equicharacteristic 0 case we describe the induced structure on the value group and the residue difference field.
Let E/k be a function field over an infinite field of constants. Assume that E/k(x) is a separable extension of degree greater than one such that there exists a place of degree one of k(x) ramified in E. Let K/k be a function field. We prove that there exist infinitely many nonisomorphic separable extensions L/K such that [L:K]=[E:k(x)] and AutkL=AutKL≅Autk(x)E.
Let K be a complete ultrametric algebraically closed field and let A be the Banach K-algebra of bounded analytic functions in the ‘open’ unit disc D of K provided with the Gauss norm. Let Mult(A,‖ · ‖) be the set of continuous multiplicative semi-norms of A provided with the topology of simple convergence, let Multm(A, ‖ · ‖) be the subset of the φ ∈ Mult(A, ‖ · ‖) whose kernel is a maximal ideal and let Multa(A, ‖ · ‖) be the subset of the φ ∈ Mult(A, ‖ · ‖) whose kernel is a maximal ideal of the form (x − a)A with a ∈ D. We complete the characterization of continuous multiplicative norms of A by proving that the Gauss norm defined on polynomials has a unique continuation to A as a norm: the Gauss norm again. But we find prime closed ideals that are neither maximal nor null. The Corona Problem on A lies in two questions: is Multa(A, ‖ · ‖) dense in Multm(A, ‖ · ‖)? Is it dense in Multm(A, ‖ · ‖)? In a previous paper, Mainetti and Escassut showed that if each maximal ideal of A is the kernel of a unique φ ∈ Mult(m(A, ‖ · ‖), then the answer to the first question is affirmative. In particular, the authors showed that when K is strongly valued each maximal ideal of A is the kernel of a unique φ ∈ Mult(m(A, ‖ · ‖). Here we prove that this uniqueness also holds when K is spherically complete, and therefore so does the density of Multa(A, ‖ · ‖) in Multm(A, ‖ · ‖).
In this article we introduce and prove a ℤ/p meta-abelian form of the birationalp-adic section conjecture for curves. This is a much stronger result than the usual p-adic birational section conjecture for curves, and makes an effective p-adic section conjecture for curves quite plausible.
The notion of a prolongation of an algebraic variety is developed in an abstract setting that generalizes the difference and (Hasse) differential contexts. An interpolating map that compares these prolongation spaces with algebraic jet spaces is introduced and studied.
A theorem of Kuyk says that every Abelian extension of a Hilbertian field is Hilbertian. We conjecture that for an Abelian variety A defined over a Hilbertian field K every extension L of K in K(Ator) is Hilbertian. We prove our conjecture when K is a number field. The proof applies a result of Serre about l-torsion of Abelian varieties, information about l-adic analytic groups, and Haran's diamond theorem.
Let υ be a valuation on K with value group Gυ, residue field kυ, rank υ = t and K (x1, …, xn) be the field of rational functions over K with n variables. If G is the direct sum of G1 and d infinite cyclic groups where G1 is a totally ordered group containing Gυ as an ordered subgroup with [G1 : Gυ] < ∞ and k′ is a finite field extension of kυ then there exists a residual transcendental extension u of υ to K (x1, …, xn) such that rank u = t + d, Gu = G the algebraic closure of kυ in kυ is k′ and trans deg ku/kυ = n − d.
We study the asymptotical behaviour of the moduli space of morphisms of given anticanonical degree from a rational curve to a split toric variety, when the degree goes to infinity. We obtain in this case a geometric analogue of Manin’s conjecture about rational points of bounded height on varieties defined over a global field. The study is led through a generating series whose coefficients lie in a Grothendieck ring of motives, the motivic height zeta function. In order to establish convergence properties of this function, we use a notion of motivic Euler product. It relies on a construction of Denef and Loeser which associates a virtual motive to a first order logic ring formula.
We study behaviours of the ‘equianharmonic’ parameter of the Grothendieck–Teichmüller group introduced by Lochak and Schneps. Using geometric construction of a certain one-parameter family of quartics, we realize the Galois action on the fundamental group of a punctured Mordell elliptic curve in the standard Galois action on a specific subgroup of the braid group . A consequence is to represent a matrix specialization of the ‘equianharmonic’ parameter in terms of special values of the adelic beta function introduced and studied by Anderson and Ihara.
We prove that n-hypergraphs can be interpreted in e-free perfect PAC fields in particular in pseudofinite fields. We use methods of function field arithmetic, more precisely we construct generic polynomials with alternating groups as Galois groups over a function field.