We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct an existentially undecidable complete discretely valued field of mixed characteristic with existentially decidable residue field and decidable algebraic part, answering a question by Anscombe–Fehm in a strong way. Along the way, we construct an existentially decidable field of positive characteristic with an existentially undecidable finite extension, modifying a construction due to Kesavan Thanagopal.
We prove a large finite field version of the Boston–Markin conjecture on counting Galois extensions of the rational function field with a given Galois group and the smallest possible number of ramified primes. Our proof involves a study of structure groups of (direct products of) racks.
We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry over general fields $\mathbb {F}$ of characteristic zero as a normalised $\mathbb {F}$-linear functional on $\mathbb {F}[\alpha _1, \alpha _2]$ that maps polynomials that evaluate to zero on C to zero and is $\mathrm {SO}(2,\mathbb {F})$-invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers
We study model theory of actions of finite groups on substructures of a stable structure. We give an abstract description of existentially closed actions as above in terms of invariants and PAC structures. We show that if the corresponding PAC property is first order, then the theory of such actions has a model companion. Then, we analyze some particular theories of interest (mostly various theories of fields of positive characteristic) and show that in all the cases considered the PAC property is first order.
In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We develop geometric results and applications for Hensel minimal structures that were previously known only under stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell decomposition, all under Hensel minimality – more precisely, $1$-h-minimality. We obtain a diophantine application of counting rational points of bounded height on Hensel minimal curves.
A field K in a ring language $\mathcal {L}$ is finitely undecidable if $\mbox {Cons}(T)$ is undecidable for every nonempty finite $T \subseteq {\mathtt{Th}}(K; \mathcal {L})$. We extend a construction of Ziegler and (among other results) use a first-order classification of Anscombe and Jahnke to prove every NIP henselian nontrivially valued field is finitely undecidable. We conclude (assuming the NIP Fields Conjecture) that every NIP field is finitely undecidable. This work is drawn from the author’s PhD thesis [48, Chapter 3].
For any subset $Z \subseteq {\mathbb {Q}}$, consider the set $S_Z$ of subfields $L\subseteq {\overline {\mathbb {Q}}}$ which contain a co-infinite subset $C \subseteq L$ that is universally definable in L such that $C \cap {\mathbb {Q}}=Z$. Placing a natural topology on the set ${\operatorname {Sub}({\overline {\mathbb {Q}}})}$ of subfields of ${\overline {\mathbb {Q}}}$, we show that if Z is not thin in ${\mathbb {Q}}$, then $S_Z$ is meager in ${\operatorname {Sub}({\overline {\mathbb {Q}}})}$. Here, thin and meager both mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fields L have the property that the ring of algebraic integers $\mathcal {O}_L$ is universally definable in L. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every $\exists $-definable subset of an algebraic extension of ${\mathbb Q}$ is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials.
Let $p$ be a prime number, $k$ a finite field of characteristic $p>0$ and $K/k$ a finitely generated extension of fields. Let $A$ be a $K$-abelian variety such that all the isogeny factors are neither isotrivial nor of $p$-rank zero. We give a necessary and sufficient condition for the finite generation of $A(K^{\mathrm {perf}})$ in terms of the action of $\mathrm {End}(A)\otimes \mathbb {Q}_p$ on the $p$-divisible group $A[p^{\infty }]$ of $A$. In particular, we prove that if $\mathrm {End}(A)\otimes \mathbb {Q}_p$ is a division algebra, then $A(K^{\mathrm {perf}})$ is finitely generated. This implies the ‘full’ Mordell–Lang conjecture for these abelian varieties. In addition, we prove that all the infinitely $p$-divisible elements in $A(K^{\mathrm {perf}})$ are torsion. These reprove and extend previous results to the non-ordinary case.
We prove general Dwork-type congruences for constant terms attached to tuples of Laurent polynomials. We apply this result to establishing arithmetic and p-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of hypergeometric and Knizhnik–Zamolodchikov (KZ) equations, solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application, we show that the simplest example of a p-adic KZ connection has an invariant line subbundle while its complex analog has no nontrivial subbundles due to the irreducibility of its monodromy representation.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
In this paper we develop a new technique for showing that a nonlinear algebraic differential equation is strongly minimal based on the recently developed notion of the degree of non-minimality of Freitag and Moosa. Our techniques are sufficient to show that generic order $h$ differential equations with non-constant coefficients are strongly minimal, answering a question of Poizat (1980).
The Hopf–Galois structures admitted by a Galois extension of fields $ L/K $ with Galois group G correspond bijectively with certain subgroups of $ \mathrm{Perm}(G) $. We use a natural partition of the set of such subgroups to obtain a method for partitioning the set of corresponding Hopf–Galois structures, which we term ρ-conjugation. We study properties of this construction, with particular emphasis on the Hopf–Galois analogue of the Galois correspondence, the connection with skew left braces, and applications to questions of integral module structure in extensions of local or global fields. In particular, we show that the number of distinct ρ-conjugates of a given Hopf–Galois structure is determined by the corresponding skew left brace, and that if $ H, H^{\prime} $ are Hopf algebras giving ρ-conjugate Hopf–Galois structures on a Galois extension of local or global fields $ L/K $ then an ambiguous ideal $ \mathfrak{B} $ of L is free over its associated order in H if and only if it is free over its associated order in Hʹ. We exhibit a variety of examples arising from interactions with existing constructions in the literature.
We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert’s theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.
For any real polynomial $p(x)$ of even degree k, Shapiro [‘Problems around polynomials: the good, the bad and the ugly$\ldots $’, Arnold Math. J.1(1) (2015), 91–99] proposed the conjecture that the sum of the number of real zeros of the two polynomials $(k-1)(p{'}(x))^{2}-kp(x)p{"}(x)$ and $p(x)$ is larger than 0. We prove that the conjecture is true except in one case: when the polynomial $p(x)$ has no real zeros, the derivative polynomial $p{'}(x)$ has one real simple zero, that is, $p{'}(x)=C(x)(x-w)$, where $C(x)$ is a polynomial with $C(w)\ne 0$, and the polynomial $(k-1)(C(x))^2(x-w)^{2}-kp(x)C{'}(x)(x-w)-kC(x)p(x)$ has no real zeros.
Let F be a subfield of the complex numbers and $f(x)=x^6+ax^5+bx^4+cx^3+bx^2+ax+1 \in F[x]$ an irreducible polynomial. We give an elementary characterisation of the Galois group of $f(x)$ as a transitive subgroup of $S_6$. The method involves determining whether three expressions involving a, b and c are perfect squares in F and whether a related quartic polynomial has a linear factor. As an application, we produce one-parameter families of reciprocal sextic polynomials with a specified Galois group.
Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of
$\mathbb {Q}$
and to give a new proof of the vanishing of Massey triple products in Galois cohomology.
This paper consists of three parts: First, letting $b_1(z)$, $b_2(z)$, $p_1(z)$ and $p_2(z)$ be nonzero polynomials such that $p_1(z)$ and $p_2(z)$ have the same degree $k\geq 1$ and distinct leading coefficients $1$ and $\alpha$, respectively, we solve entire solutions of the Tumura–Clunie type differential equation $f^{n}+P(z,\,f)=b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}$, where $n\geq 2$ is an integer, $P(z,\,f)$ is a differential polynomial in $f$ of degree $\leq n-1$ with coefficients having polynomial growth. Second, we study the oscillation of the second-order differential equation $f''-[b_1(z)e^{p_1(z)}+b_2(z)e^{p_2(z)}]f=0$ and prove that $\alpha =[2(m+1)-1]/[2(m+1)]$ for some integer $m\geq 0$ if this equation admits a nontrivial solution such that $\lambda (f)<\infty$. This partially answers a question of Ishizaki. Finally, letting $b_2\not =0$ and $b_3$ be constants and $l$ and $s$ be relatively prime integers such that $l> s\geq 1$, we prove that $l=2$ if the equation $f''-(e^{lz}+b_2e^{sz}+b_3)f=0$ admits two linearly independent solutions $f_1$ and $f_2$ such that $\max \{\lambda (f_1),\,\lambda (f_2)\}<\infty$. In particular, we precisely characterize all solutions such that $\lambda (f)<\infty$ when $l=2$ and $l=4$.
We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math.31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$. We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$, and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$.
We develop a sheaf cohomology theory of algebraic varieties over an algebraically closed nontrivially valued nonarchimedean field K based on Hrushovski-Loeser’s stable completion. In parallel, we develop a sheaf cohomology of definable subsets in o-minimal expansions of the tropical semi-group
$\Gamma _{\infty }$
, where
$\Gamma $
denotes the value group of K. For quasi-projective varieties, both cohomologies are strongly related by a deformation retraction of the stable completion homeomorphic to a definable subset of
$\Gamma _{\infty }$
. In both contexts, we show that the corresponding cohomology theory satisfies the Eilenberg-Steenrod axioms, finiteness and invariance, and we provide natural bounds of cohomological dimension in each case. As an application, we show that there are finitely many isomorphism types of cohomology groups in definable families. Moreover, due to the strong relation between the stable completion of an algebraic variety and its analytification in the sense of V. Berkovich, we recover and extend results on the singular cohomology of the analytification of algebraic varieties concerning finiteness and invariance.
We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the degree constraints on polynomials to be relaxed.