To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examine the consequences of having a total division operation $\frac {x}{y}$ on commutative rings. We consider two forms of binary division, one derived from a unary inverse, the other defined directly as a general operation; each are made total by setting $1/0$ equal to an error value $\bot $, which is added to the ring. Such totalised divisions we call common divisions. In a field the two forms are equivalent and we have a finite equational axiomatisation E that is complete for the equational theory of fields equipped with common division, which are called common meadows. These equational axioms E turn out to be true of commutative rings with common division but only when defined via inverses. We explore these axioms E and their role in seeking a completeness theorem for the conditional equational theory of common meadows. We prove they are complete for the conditional equational theory of commutative rings with inverse based common division. By adding a new proof rule, we can prove a completeness theorem for the conditional equational theory of common meadows. Although, the equational axioms E fail with common division defined directly, we observe that the direct division does satisfy the equations in E under a new congruence for partial terms called eager equality.
We study the question of $\mathcal {L}_{\mathrm {ring}}$-definability of non-trivial henselian valuation rings. Building on previous work of Jahnke and Koenigsmann, we provide a characterization of henselian fields that admit a non-trivial definable henselian valuation. In particular, we treat the cases where the canonical henselian valuation has positive residue characteristic, using techniques from the model theory and algebra of tame fields.
Several structural results about permutation groups of finite rank definable in differentially closed fields of characteristic zero (and other similar theories) are obtained. In particular, it is shown that every finite rank definably primitive permutation group is definably isomorphic to an algebraic permutation group living in the constants. Applications include the verification, in differentially closed fields, of the finite Morley rank permutation group conjectures of Borovik-Deloro and Borovik-Cherlin. Applying the results to binding groups for internality to the constants, it is deduced that if complete types p and q are of rank m and n, respectively, and are nonorthogonal, then the $(m+3)$rd Morley power of p is not weakly orthogonal to the $(n+3)$rd Morley power of q. An application to transcendence of generic solutions of pairs of algebraic differential equations is given.
We study the geometry of tropical extensions of hyperfields, including the ordinary, signed, and complex tropical hyperfields. We introduce the framework of ‘enriched valuations’ as hyperfield homomorphisms to tropical extensions and show that a notable family of them are relatively algebraically closed. Our main results are hyperfield analogues of Kapranov’s theorem and the Fundamental theorem of tropical geometry. Utilizing these theorems, we introduce fine tropical varieties and prove a structure theorem for them in terms of their initial ideals.
Let ${\mathbb K}$ be an algebraically bounded structure, and let T be its theory. If T is model complete, then the theory of ${\mathbb K}$ endowed with a derivation, denoted by $T^{\delta }$, has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion of $T^{\delta }$ is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that
We give explicit formulas witnessing IP, IP$_{\!n}$, or TP2 in fields with Artin–Schreier extensions. We use them to control p-extensions of mixed characteristic henselian valued fields, allowing us most notably to generalize to the NIP$_{\!n}$ context one way of Anscombe–Jahnke’s classification of NIP henselian valued fields. As a corollary, we obtain that NIP$_{\!n}$ henselian valued fields with NIP residue field are NIP. We also discuss tameness results for NTP2 henselian valued fields.
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
As a continuation of the work of the third author in [5], we make further observations on the features of Galois cohomology in the general model theoretic context. We make explicit the connection between forms of definable groups and first cohomology sets with coefficients in a suitable automorphism group. We then use a method of twisting cohomology (inspired by Serre’s algebraic twisting) to describe arbitrary fibres in cohomology sequences—yielding a useful “finiteness” result on cohomology sets.
Applied to the special case of differential fields and Kolchin’s constrained cohomology, we complete results from [3] by proving that the first constrained cohomology set of a differential algebraic group over a bounded, differentially large, field is countable.
Many problems and conjectures in extremal combinatorics concern polynomial inequalities between homomorphism densities of graphs where we allow edges to have real weights. Using the theory of graph limits, we can equivalently evaluate polynomial expressions in homomorphism densities on kernels W, that is, symmetric, bounded and measurable functions W from $[0,1]^2 \to \mathbb {R}$. In 2011, Hatami and Norin proved a fundamental result that it is undecidable to determine the validity of polynomial inequalities in homomorphism densities for graphons (i.e., the case where the range of W is $[0,1]$, which corresponds to unweighted graphs or, equivalently, to graphs with edge weights between $0$ and $1$). The corresponding problem for more general sets of kernels, for example, for all kernels or for kernels with range $[-1,1]$, remains open. For any $a> 0$, we show undecidability of polynomial inequalities for any set of kernels which contains all kernels with range $\{0,a\}$. This result also answers a question raised by Lovász about finding computationally effective certificates for the validity of homomorphism density inequalities in kernels.
Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if $K$ is a finitely generated extension of transcendence degree $r$ of a global field and $A$ is a closed abelian subgroup of $\textrm{Gal}(K)$, then ${\mathrm{rank}}(A)\le r+1$. Moreover, if $\mathrm{char}(K)=0$, then ${\hat{\mathbb{Z}}}^{r+1}$ is isomorphic to a closed subgroup of $\textrm{Gal}(K)$.
We continue our study from Peterzil et al. (2022, Preprint, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory $T_{\partial }$, the model companion of an o-minimal ${\mathcal {L}}$-theory T expanded by a generic derivation $\partial $ as in Fornasiero and Kaplan (2021, Journal of Mathematical Logic 21, 2150007).
We generalize Buium’s notion of an algebraic D-group to ${\mathcal {L}}$-definable D-groups, namely $(G,s)$, where G is an ${\mathcal {L}}$-definable group in a model of T, and $s:G\to \tau (G)$ is an ${\mathcal {L}}$-definable group section. Our main theorem says that every definable group of finite dimension in a model of $T_\partial $ is definably isomorphic to a group of the form
We construct an existentially undecidable complete discretely valued field of mixed characteristic with existentially decidable residue field and decidable algebraic part, answering a question by Anscombe–Fehm in a strong way. Along the way, we construct an existentially decidable field of positive characteristic with an existentially undecidable finite extension, modifying a construction due to Kesavan Thanagopal.
We prove a large finite field version of the Boston–Markin conjecture on counting Galois extensions of the rational function field with a given Galois group and the smallest possible number of ramified primes. Our proof involves a study of structure groups of (direct products of) racks.
We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry over general fields $\mathbb {F}$ of characteristic zero as a normalised $\mathbb {F}$-linear functional on $\mathbb {F}[\alpha _1, \alpha _2]$ that maps polynomials that evaluate to zero on C to zero and is $\mathrm {SO}(2,\mathbb {F})$-invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers
We study model theory of actions of finite groups on substructures of a stable structure. We give an abstract description of existentially closed actions as above in terms of invariants and PAC structures. We show that if the corresponding PAC property is first order, then the theory of such actions has a model companion. Then, we analyze some particular theories of interest (mostly various theories of fields of positive characteristic) and show that in all the cases considered the PAC property is first order.
In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We develop geometric results and applications for Hensel minimal structures that were previously known only under stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell decomposition, all under Hensel minimality – more precisely, $1$-h-minimality. We obtain a diophantine application of counting rational points of bounded height on Hensel minimal curves.
A field K in a ring language $\mathcal {L}$ is finitely undecidable if $\mbox {Cons}(T)$ is undecidable for every nonempty finite $T \subseteq {\mathtt{Th}}(K; \mathcal {L})$. We extend a construction of Ziegler and (among other results) use a first-order classification of Anscombe and Jahnke to prove every NIP henselian nontrivially valued field is finitely undecidable. We conclude (assuming the NIP Fields Conjecture) that every NIP field is finitely undecidable. This work is drawn from the author’s PhD thesis [48, Chapter 3].
For any subset $Z \subseteq {\mathbb {Q}}$, consider the set $S_Z$ of subfields $L\subseteq {\overline {\mathbb {Q}}}$ which contain a co-infinite subset $C \subseteq L$ that is universally definable in L such that $C \cap {\mathbb {Q}}=Z$. Placing a natural topology on the set ${\operatorname {Sub}({\overline {\mathbb {Q}}})}$ of subfields of ${\overline {\mathbb {Q}}}$, we show that if Z is not thin in ${\mathbb {Q}}$, then $S_Z$ is meager in ${\operatorname {Sub}({\overline {\mathbb {Q}}})}$. Here, thin and meager both mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fields L have the property that the ring of algebraic integers $\mathcal {O}_L$ is universally definable in L. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every $\exists $-definable subset of an algebraic extension of ${\mathbb Q}$ is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials.
Let $p$ be a prime number, $k$ a finite field of characteristic $p>0$ and $K/k$ a finitely generated extension of fields. Let $A$ be a $K$-abelian variety such that all the isogeny factors are neither isotrivial nor of $p$-rank zero. We give a necessary and sufficient condition for the finite generation of $A(K^{\mathrm {perf}})$ in terms of the action of $\mathrm {End}(A)\otimes \mathbb {Q}_p$ on the $p$-divisible group $A[p^{\infty }]$ of $A$. In particular, we prove that if $\mathrm {End}(A)\otimes \mathbb {Q}_p$ is a division algebra, then $A(K^{\mathrm {perf}})$ is finitely generated. This implies the ‘full’ Mordell–Lang conjecture for these abelian varieties. In addition, we prove that all the infinitely $p$-divisible elements in $A(K^{\mathrm {perf}})$ are torsion. These reprove and extend previous results to the non-ordinary case.