To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We settle the noninner automorphism conjecture for finite p-groups ($p> 2$) with certain conditions. Also, we give an elementary and short proof of the main result of Ghoraishi [‘On noninner automorphisms of finite nonabelian p-groups’, Bull. Aust. Math. Soc.89(2) (2014) 202–209].
The structure of groups in which every element has prime power order (CP-groups) is extensively studied. We first investigate the properties of group $G$ such that each element of $G\setminus N$ has prime power order. It is proved that $N$ is solvable or every non-solvable chief factor $H/K$ of $G$ satisfying $H\leq N$ is isomorphic to $PSL_2(3^f)$ with $f$ a 2-power. This partially answers the question proposed by Lewis in 2023, asking whether $G\cong M_{10}$? Furthermore, we prove that if each element $x\in G\backslash N$ has prime power order and ${\bf C}_G(x)$ is maximal in $G$, then $N$ is solvable. Relying on this, we give the structure of group $G$ with normal subgroup $N$ such that ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in G\setminus N$. Finally, we investigate the structure of a normal subgroup $N$ when the centralizer ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in N\setminus {\bf Z}(N)$, which is a generalization of results of Zhao, Chen, and Guo in 2020, investigating a special case that $N=G$ for our main result. We also provide a new proof for Zhao, Chen, and Guo's results above.
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$. Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$-algebra of G, viewed as a $(Z,Z)$-bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$, we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $. We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$-representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$, where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $.
This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$, then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
We find an upper bound for the number of groups of order n up to isomorphism in the variety ${\mathfrak {S}}={\mathfrak {A}_p}{\mathfrak {A}_q}{\mathfrak {A}_r}$, where p, q and r are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $\mathfrak {A}_q\mathfrak {A}_r$.
Let $E/F$ be a quadratic unramified extension of non-archimedean local fields and $\mathbb H$ a simply connected semisimple algebraic group defined and split over F. We establish general results (multiplicities, test vectors) on ${\mathbb H} (F)$-distinguished Iwahori-spherical representations of ${\mathbb H} (E)$. For discrete series Iwahori-spherical representations of ${\mathbb H} (E)$, we prove a numerical criterion of ${\mathbb H} (F)$-distinction. As an application, we classify the ${\mathbb H} (F)$-distinguished discrete series representations of ${\mathbb H} (E)$ corresponding to degree $1$ characters of the Iwahori-Hecke algebra.
We give new descriptions of the Bruhat order and Demazure products of affine Weyl groups in terms of the weight function of the quantum Bruhat graph. These results can be understood to describe certain closure relations concerning the Iwahori–Bruhat decomposition of an algebraic group. As an application towards affine Deligne–Lusztig varieties, we present a new formula for generic Newton points.
Let G be a finite group. A subgroup A of G is said to be S-permutable in G if A permutes with every Sylow subgroup P of G, that is, $AP=PA$. Let $A_{sG}$ be the subgroup of A generated by all S-permutable subgroups of G contained in A and $A^{sG}$ be the intersection of all S-permutable subgroups of G containing A. We prove that if G is a soluble group, then S-permutability is a transitive relation in G if and only if the nilpotent residual $G^{\mathfrak {N}}$ of G avoids the pair $(A^{s G}, A_{sG})$, that is, $G^{\mathfrak {N}}\cap A^{sG}= G^{\mathfrak {N}}\cap A_{sG}$ for every subnormal subgroup A of G.
Let $\alpha $ be a complex-valued $2$-cocycle of a finite group G with $\alpha $ chosen so that the $\alpha $-characters of G are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of G that are also $\alpha $-regular are characterised by the values that the irreducible $\alpha $-characters of G take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of $G;$ however, the initial choice of $\alpha $ from its cohomology class is not unique in general and it is shown the results can vary for a different choice.
In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras of finite $p$-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank, which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian $p$-groups with generalized corank at most three.
A group $G=AB$ is the weakly mutually permutable product of the subgroups A and B, if A permutes with every subgroup of B containing $A \cap B$ and B permutes with every subgroup of A containing $A \cap B$. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, J. Algebra595 (2022), 434–443] who showed that if $G'$ is nilpotent, A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, then $G^{\mathfrak {F}}=A^{\mathfrak {F}}B^{\mathfrak {F}} $, where $ \mathfrak {F} $ is a saturated formation containing $ \mathfrak {U} $, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning $ \mathfrak {F} $-residuals, $ \mathfrak {F} $-projectors and $\mathfrak {F}$-normalisers. As an application of some of our arguments, we unify some results on weakly mutually $sn$-products.
Let G be a finite group and $\mathrm {Irr}(G)$ the set of all irreducible complex characters of G. Define the codegree of $\chi \in \mathrm {Irr}(G)$ as $\mathrm {cod}(\chi ):={|G:\mathrm {ker}(\chi ) |}/{\chi (1)}$ and let $\mathrm {cod}(G):=\{\mathrm {cod}(\chi ) \mid \chi \in \mathrm {Irr}(G)\}$ be the codegree set of G. Let $\mathrm {A}_n$ be an alternating group of degree $n \ge 5$. We show that $\mathrm {A}_n$ is determined up to isomorphism by $\operatorname {cod}(\mathrm {A}_n)$.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
Suppose that G is a finite solvable group. Let $t=n_c(G)$ denote the number of orders of nonnormal subgroups of G. We bound the derived length $dl(G)$ in terms of $n_c(G)$. If G is a finite p-group, we show that $|G'|\leq p^{2t+1}$ and $dl(G)\leq \lceil \log _2(2t+3)\rceil $. If G is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of $|G'|$ is less than t and that $dl(G)\leq \lfloor 2(t+1)/3\rfloor +1$.
For any branched double covering of compact Riemann surfaces, we consider the associated character varieties that are unitary in the global sense, which we call $\operatorname {\mathrm {GL}}_n\rtimes \!<\!\sigma {>}$-character varieties. We restrict the monodromies around the branch points to generic semi-simple conjugacy classes contained in $\operatorname {\mathrm {GL}}_n\sigma $ and compute the E-polynomials of these character varieties using the character table of $\operatorname {\mathrm {GL}}_n(q)\rtimes \!<\!\sigma \!>\!$. The result is expressed as the inner product of certain symmetric functions associated to the wreath product $(\mathbb {Z}/2\mathbb {Z})^N\rtimes \mathfrak {S}_N$. We are then led to a conjectural formula for the mixed Hodge polynomial, which involves (modified) Macdonald polynomials and wreath Macdonald polynomials.
We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups $\mathsf {S}_n$, it is proved that, with one exception, any two irreducible characters have at least one common zero. To further explore this phenomenon, we introduce the common-zero graph of a finite group G, with nonlinear irreducible characters of G as vertices, and edges connecting characters that vanish on some common group element. We show that for solvable and simple groups, the number of connected components of this graph is bounded above by three. Lastly, the result for $\mathsf {S}_n$ is applied to prove the nonequivalence of the metrics on permutations induced from faithful irreducible characters of the group.
In 1968, Steinberg [Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968)] proved a theorem stating that the exterior powers of an irreducible reflection representation of a Euclidean reflection group are again irreducible and pairwise nonisomorphic. We extend this result to a more general context where the inner product invariant under the group action may not necessarily exist.
In this paper, we study triple-product-free sets, which are analogous to the widely studied concept of product-free sets. A nonempty subset S of a group G is triple-product-free if $abc \notin S$ for all $a, b, c \in S$. If S is triple-product-free and is not a proper subset of any other triple-product-free set, we say that S is locally maximal. We classify all groups containing a locally maximal triple-product-free set of size 1. We then derive necessary and sufficient conditions for a subset of a group to be locally maximal triple-product-free, and conclude with some observations and comparisons with the situation for standard product-free sets.
We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$-web bases of the irreducible $ \mathfrak {S}_{2n} $-representation indexed by $ (n,n) $, which answers Rhoades’s question. Furthermore, we study enumerative properties of these permutations.
This is a contribution to the study of $\mathrm {Irr}(G)$ as an $\mathrm {Aut}(G)$-set for G a finite quasisimple group. Focusing on the last open case of groups of Lie type $\mathrm {D}$ and $^2\mathrm {D}$, a crucial property is the so-called $A'(\infty )$ condition expressing that diagonal automorphisms and graph-field automorphisms of G have transversal orbits in $\mathrm {Irr}(G)$. This is part of the stronger $A(\infty )$ condition introduced in the context of the reduction of the McKay conjecture to a question about quasisimple groups. Our main theorem is that a minimal counterexample to condition $A(\infty )$ for groups of type $\mathrm {D}$ would still satisfy $A'(\infty )$. This will be used in a second paper to fully establish $A(\infty )$ for any type and rank. The present paper uses Harish-Chandra induction as a parametrization tool. We give a new, more effective proof of the theorem of Geck and Lusztig ensuring that cuspidal characters of any standard Levi subgroup of $G=\mathrm {D}_{ l,\mathrm {sc}}(q)$ extend to their stabilizers in the normalizer of that Levi subgroup. This allows us to control the action of automorphisms on these extensions. From there, Harish-Chandra theory leads naturally to a detailed study of associated relative Weyl groups and other extendibility problems in that context.