To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Assume that G is a finite group, N is a nontrivial normal subgroup of G and p is an odd prime. Let $\mathrm{Irr}_p(G)=\{\chi \in \mathrm{Irr}(G) : \chi (1)=1~\mathrm{or}~ p \mid \chi (1)\}$ and $\mathrm{Irr}_p(G|N)=\{\chi \in \mathrm{Irr}_p(G) : N \not \leq \mathrm{ker}\,\chi \}$. The average character degree of irreducible characters of $\mathrm{Irr}_p(G)$ and the average character degree of irreducible characters of $\mathrm{Irr}_p(G|N)$ are denoted by $\mathrm{acd}_p(G)$ and $\mathrm{acd}_p(G|N)$, respectively. We show that if $\mathrm{Irr}_p(G|N) \neq \emptyset $ and $\mathrm{acd}_p(G|N) < \mathrm{acd}_p(\mathrm{PSL}_2(p))$, then G is p-solvable and $O^{p'}(G)$ is solvable. We find examples that make this bound best possible. Moreover, we see that if $\mathrm{Irr}_p(G|N) = \emptyset $, then N is p-solvable and $P \cap N$ and $PN/N$ are abelian for every $P \in \mathrm{Syl}_p(G)$.
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$. We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$.
Let $p \;:\; Y \to X$ be a finite, regular cover of finite graphs with associated deck group $G$, and consider the first homology $H_1(Y;\;{\mathbb{C}})$ of the cover as a $G$-representation. The main contribution of this article is to broaden the correspondence and dictionary between the representation theory of the deck group $G$ on the one hand and topological properties of homology classes in $H_1(Y;\;{\mathbb{C}})$ on the other hand. We do so by studying certain subrepresentations in the $G$-representation $H_1(Y;\;{\mathbb{C}})$.
The homology class of a lift of a primitive element in $\pi _1(X)$ spans an induced subrepresentation in $H_1(Y;\;{\mathbb{C}})$, and we show that this property is never sufficient to characterize such homology classes if $G$ is Abelian. We study $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \leq H_1(Y;\;{\mathbb{C}})$—the subrepresentation spanned by homology classes of lifts of commutators of primitive elements in $\pi _1(X)$. Concretely, we prove that the span of such a homology class is isomorphic to the quotient of two induced representations. Furthermore, we construct examples of finite covers with $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \neq \ker\!(p_*)$.
To each pair consisting of a saturated fusion system over a p-group together with a compatible family of Külshammer-Puig cohomology classes, one can count weights in a hypothetical block algebra arising from these data. When the pair arises from a genuine block of a finite group algebra in characteristic p, the number of conjugacy classes of weights is supposed to be the number of simple modules in the block. We show that there is unique such pair associated with each Benson-Solomon exotic fusion system, and that the number of weights in a hypothetical Benson-Solomon block is $12$, independently of the field of definition. This is carried out in part by listing explicitly up to conjugacy all centric radical subgroups and their outer automorphism groups in these systems.
We compute the trivial source character tables (also called species tables of the trivial source ring) of the infinite family of finite groups $\operatorname{SL}_{2}(q)$ for q even over a large enough field of odd characteristics. This article is a continuation of our article Trivial Source Character Tables of$\operatorname{SL}_{2}(q)$, where we considered, in particular, the case in which q is odd in non-defining characteristic.
A subgroup H of a group G is said to be pronormal in G if each of its conjugates $H^g$ in G is already conjugate to it in the subgroup $\langle H,H^g\rangle $. The aim of this paper is to classify those (locally) finite simple groups which have only nilpotent or pronormal subgroups.
The Frobenius–Schur indicators of characters in a real $2$-block with dihedral defect groups have been determined by Murray [‘Real subpairs and Frobenius–Schur indicators of characters in 2-blocks’, J. Algebra322 (2009), 489–513]. We show that two infinite families described in his work do not exist and we construct examples for the remaining families. We further present some partial results on Frobenius–Schur indicators of characters in other tame blocks.
We consider a Deligne–Mumford stack $X$ which is the quotient of an affine scheme $\operatorname {Spec}A$ by the action of a finite group $G$ and show that the Balmer spectrum of the tensor triangulated category of perfect complexes on $X$ is homeomorphic to the space of homogeneous prime ideals in the group cohomology ring $H^*(G,A)$.
Let $\Gamma _{g}$ be the fundamental group of a closed connected orientable surface of genus $g\geq 2$. We develop a new method for integrating over the representation space $\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$, where $S_{n}$ is the symmetric group of permutations of $\{1,\ldots ,n\}$. Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g.
Given $\phi \in \mathbb {X}_{g,n}$ and $\gamma \in \Gamma _{g}$, we let $\mathsf {fix}_{\gamma }(\phi )$ be the number of fixed points of the permutation $\phi (\gamma )$. The function $\mathsf {fix}_{\gamma }$ is a special case of a natural family of functions on $\mathbb {X}_{g,n}$ called Wilson loops. Our new methodology leads to an asymptotic formula, as $n\to \infty $, for the expectation of $\mathsf {fix}_{\gamma }$ with respect to the uniform probability measure on $\mathbb {X}_{g,n}$, which is denoted by $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$. We prove that if $\gamma \in \Gamma _{g}$ is not the identity and q is maximal such that $\gamma $ is a qth power in $\Gamma _{g}$, then
as $n\to \infty $, where $d\left (q\right )$ is the number of divisors of q. Even the weaker corollary that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$ as $n\to \infty $ is a new result of this paper. We also prove that $\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$ can be approximated to any order $O(n^{-M})$ by a polynomial in $n^{-1}$.
Skew left braces arise naturally from the study of non-degenerate set-theoretic solutions of the Yang–Baxter equation. To understand the algebraic structure of skew left braces, a study of the decomposition into minimal substructures is relevant. We introduce chief series and prove a strengthened form of the Jordan–Hölder theorem for finite skew left braces. A characterization of right nilpotency and an application to multipermutation solutions are also given.
Let G be a p-group for some prime p. Recall that the Hughes subgroup of G is the subgroup generated by all of the elements of G with order not equal to p. In this paper, we prove that if the Hughes subgroup of G is cyclic, then G has exponent p or is cyclic or is dihedral. We also prove that if the Hughes subgroup of G is generalised quaternion, then G must be generalised quaternion. With these results in hand, we classify the tidy p-groups.
For a finite abelian p-group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$, we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p-group $S\ge A$ such that $C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$, and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
Let G denote a possibly discrete topological group admitting an open subgroup I which is pro-p. If H denotes the corresponding Hecke algebra over a field k of characteristic p, then we study the adjunction between H-modules and k-linear smooth G-representations in terms of various model structures. If H is a Gorenstein ring, we single out a full subcategory of smooth G-representations which is equivalent to the category of all Gorenstein projective H-modules via the functor of I-invariants. This applies to groups of rational points of split connected reductive groups over finite and over non-Archimedean local fields, thus generalizing a theorem of Cabanes. Moreover, we show that the Gorenstein projective model structure on the category of H-modules admits a right transfer. On the homotopy level, the right derived functor of I-invariants then admits a right inverse and becomes an equivalence when restricted to a suitable subcategory.
A classical result of Baer states that a finite group G which is the product of two normal supersoluble subgroups is supersoluble if and only if Gʹ is nilpotent. In this article, we show that if G = AB is the product of supersoluble (respectively, w-supersoluble) subgroups A and B, A is normal in G and B permutes with every maximal subgroup of each Sylow subgroup of A, then G is supersoluble (respectively, w-supersoluble), provided that Gʹ is nilpotent. We also investigate products of subgroups defined above when $ A\cap B=1 $ and obtain more general results.
Let G be a finite group and $\mathrm {Irr}(G)$ the set of all irreducible complex characters of G. Define the codegree of $\chi \in \mathrm {Irr}(G)$ as $\mathrm {cod}(\chi ):={|G:\mathrm {ker}(\chi ) |}/{\chi (1)}$ and denote by $\mathrm {cod}(G):=\{\mathrm {cod}(\chi ) \mid \chi \in \mathrm {Irr}(G)\}$ the codegree set of G. Let H be one of the $26$ sporadic simple groups. We show that H is determined up to isomorphism by cod$(H)$.
We consider rational representations of a connected linear algebraic group $\mathbb {G}$ over a field $k$ of positive characteristic $p > 0$. We introduce a natural extension $M \mapsto \Pi (\mathbb {G})_M$ to $\mathbb {G}$-modules of the $\pi$-point support theory for modules $M$ for a finite group scheme $G$ and show that this theory is essentially equivalent to the more ‘intrinsic’ and ‘explicit’ theory $M \mapsto \mathbb {P}\mathfrak{C}(\mathbb {G})_M$ of supports for an algebraic group of exponential type, a theory which uses $1$-parameter subgroups $\mathbb {G}_a \to \mathbb {G}$. We extend our support theory to bounded complexes of $\mathbb {G}$-modules, $C^\bullet \mapsto \Pi (\mathbb {G})_{C^\bullet }$. We introduce the tensor triangulated category $\mathit {StMod}(\mathbb {G})$, the Verdier quotient of the bounded derived category $D^b(\mathit {Mod}(\mathbb {G}))$ by the thick subcategory of mock injective modules. Our support theory satisfies all the ‘standard properties’ for a theory of supports for $\mathit {StMod}(\mathbb {G})$. As an application, we employ $C^\bullet \mapsto \Pi (\mathbb {G})_{C^\bullet }$ to establish the classification of $(r)$-complete, thick tensor ideals of $\mathit {stmod}(\mathbb {G})$ in terms of locally $\mathit {stmod}(\mathbb {G})$-realizable subsets of $\Pi (\mathbb {G})$ and the classification of $(r)$-complete, localizing subcategories of $\mathit {StMod}(\mathbb {G})$ in terms of locally $\mathit {StMod}(\mathbb {G})$-realizable subsets of $\Pi (\mathbb {G})$.
Let H be a subgroup of a finite group G and let $\alpha $ be a complex-valued $2$-cocycle of $G.$ Conditions are found to ensure there exists a nontrivial element of H that is $\alpha $-regular in $G.$ However, a new result is established allowing a prime by prime analysis of the Sylow subgroups of $C_G(x)$ to determine the $\alpha $-regularity of a given $x\in G.$ In particular, this result implies that every $\alpha _H$-regular element of a normal Hall subgroup H is $\alpha $-regular in $G.$
Let $\alpha $ be a complex-valued $2$-cocycle of a finite group $G.$ A new concept of strict $\alpha $-regularity is introduced and its basic properties are investigated. To illustrate the potential use of this concept, a new proof is offered to show that the number of orbits of G under its action on the set of complex-valued irreducible $\alpha _N$-characters of N equals the number of $\alpha $-regular conjugacy classes of G contained in $N,$ where N is a normal subgroup of $G.$
Let k be an algebraically closed field of prime characteristic p. Let $kGe$ be a block of a group algebra of a finite group G, with normal defect group P and abelian $p'$ inertial quotient L. Then we show that $kGe$ is a matrix algebra over a quantised version of the group algebra of a semidirect product of P with a certain subgroup of L. To do this, we first examine the associated graded algebra, using a Jennings–Quillen style theorem.
As an example, we calculate the associated graded of the basic algebra of the nonprincipal block in the case of a semidirect product of an extraspecial p-group P of exponent p and order $p^3$ with a quaternion group of order eight with the centre acting trivially. In the case of $p=3$, we give explicit generators and relations for the basic algebra as a quantised version of $kP$. As a second example, we give explicit generators and relations in the case of a group of shape $2^{1+4}:3^{1+2}$ in characteristic two.
A generating set S for a group G is independent if the subgroup generated by $S\setminus \{s\}$ is properly contained in G for all $s \in S.$ We describe the structure of finite groups G such that there are precisely two numbers appearing as the cardinalities of independent generating sets for G.