We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a finite group. An element $g \in G$ is called a vanishing element in $G$ if there exists an irreducible character $\chi$ of $G$ such that $\chi (g)=0$. The size of a conjugacy class of $G$ containing a vanishing element is called a vanishing conjugacy class size of $G$. In this paper, we give an affirmative answer to the problem raised by Bianchi, Camina, Lewis and Pacifici about the solvability of finite groups with exactly one vanishing conjugacy class size.
Let
$\pi $
be a set of primes. We say that a group G satisfies
$D_{\pi }$
if G possesses a Hall
$\pi $
-subgroup H and every
$\pi $
-subgroup of G is contained in a conjugate of H. We give a new
$D_{\pi }$
-criterion following Wielandt’s idea, which is a generalisation of Wielandt’s and Rusakov’s results.
No group has exactly one or two nonpower subgroups. We classify groups containing exactly three nonpower subgroups and show that there is a unique finite group with exactly four nonpower subgroups. Finally, we show that given any integer k greater than
$4$
, there are infinitely many groups with exactly k nonpower subgroups.
We study the free metabelian group
$M(2,n)$
of prime power exponent n on two generators by means of invariants
$M(2,n)'\to \mathbb {Z}_n$
that we construct from colorings of the squares in the integer grid
$\mathbb {R} \times \mathbb {Z} \cup \mathbb {Z} \times \mathbb {R}$
. In particular, we improve bounds found by Newman for the order of
$M(2,2^k)$
. We study identities in
$M(2,n)$
, which give information about identities in the Burnside group
$B(2,n)$
and the restricted Burnside group
$R(2,n)$
.
We show that the Specht ideal of a two-rowed partition is perfect over an arbitrary field, provided that the characteristic is either zero or bounded below by the size of the second row of the partition, and we show this lower bound is tight. We also establish perfection and other properties of certain variants of Specht ideals, and find a surprising connection to the weak Lefschetz property. Our results, in particular, give a self-contained proof of Cohen–Macaulayness of certain h-equals sets, a result previously obtained by Etingof–Gorsky–Losev over the complex numbers using rational Cherednik algebras.
We fix an error on a
$3$
-cocycle in the original version of the paper ‘Endoscopy for Hecke categories, character sheaves and representations’. We give the corrected statements of the main results.
Let $K$ be a subgroup of a finite group $G$. The probability that an element of $G$ commutes with an element of $K$ is denoted by $Pr(K,G)$. Assume that $Pr(K,G)\geq \epsilon$ for some fixed $\epsilon >0$. We show that there is a normal subgroup $T\leq G$ and a subgroup $B\leq K$ such that the indices $[G:T]$ and $[K:B]$ and the order of the commutator subgroup $[T,B]$ are $\epsilon$-bounded. This extends the well-known theorem, due to P. M. Neumann, that covers the case where $K=G$. We deduce a number of corollaries of this result. A typical application is that if $K$ is the generalized Fitting subgroup $F^{*}(G)$ then $G$ has a class-2-nilpotent normal subgroup $R$ such that both the index $[G:R]$ and the order of the commutator subgroup $[R,R]$ are $\epsilon$-bounded. In the same spirit we consider the cases where $K$ is a term of the lower central series of $G$, or a Sylow subgroup, etc.
We compare the $K$-theory stable bases of the Springer resolution associated to different affine Weyl alcoves. We prove that (up to relabelling) the change of alcoves operators are given by the Demazure–Lusztig operators in the affine Hecke algebra. We then show that these bases are categorified by the Verma modules of the Lie algebra, under the localization of Lie algebras in positive characteristic of Bezrukavnikov, Mirković, and Rumynin. As an application, we prove that the wall-crossing matrices of the $K$-theory stable bases coincide with the monodromy matrices of the quantum cohomology of the Springer resolution.
Let G be a finite solvable group and let p be a prime divisor of
$|G|$
. We prove that if every monomial monolithic character degree of G is divisible by p, then G has a normal p-complement and, if p is relatively prime to every monomial monolithic character degree of G, then G has a normal Sylow p-subgroup. We also classify all finite solvable groups having a unique imprimitive monolithic character.
We say that a subgroup H is isolated in a group G if for each
$x\in G$
either
$x\in H$
or
$\langle x\rangle \cap H={1}$
. We determine the structure of finite p-groups with isolated minimal nonabelian subgroups and finite p-groups with an isolated metacyclic subgroup.
We compare crystal combinatorics of the level
$2$
Fock space with the classification of unitary irreducible representations of type B rational Cherednik algebras to study how unitarity behaves under parabolic restriction. We show that the crystal operators that remove boxes preserve the combinatorial conditions for unitarity, and that the parabolic restriction functors categorifying the crystals send irreducible unitary representations to unitary representations. Furthermore, we find the supports of the unitary representations.
Let $G$ be a split connected reductive group over a finite field of characteristic $p > 2$ such that $G_\text {der}$ is absolutely almost simple. We give a geometric construction of perverse $\mathbb {F}_p$-sheaves on the Iwahori affine flag variety of $G$ which are central with respect to the convolution product. We deduce an explicit formula for an isomorphism from the spherical mod $p$ Hecke algebra to the center of the Iwahori mod $p$ Hecke algebra. We also give a formula for the central integral Bernstein elements in the Iwahori mod $p$ Hecke algebra. To accomplish these goals we construct a nearby cycles functor for perverse $\mathbb {F}_p$-sheaves and we use Frobenius splitting techniques to prove some properties of this functor. We also prove that certain equal characteristic analogues of local models of Shimura varieties are strongly $F$-regular, and hence they are $F$-rational and have pseudo-rational singularities.
We show that the automorphism group of a linking system associated to a saturated fusion system
$\mathcal {F}$
depends only on
$\mathcal {F}$
as long as the object set of the linking system is
$\mathrm {Aut}(\mathcal {F})$
-invariant. This was known to be true for linking systems in Oliver’s definition, but we demonstrate that the result holds also for linking systems in the considerably more general definition introduced previously by the author of this article. A similar result is proved for linking localities, which are group-like structures corresponding to linking systems. Our argument builds on a general lemma about the existence of an extension of a homomorphism between localities. This lemma is also used to reprove a theorem of Chermak showing that there is a natural bijection between the sets of partial normal subgroups of two possibly different linking localities over the same fusion system.
In this paper, we study the structure of finite groups
$G=AB$
which are a weakly mutually
$sn$
-permutable product of the subgroups A and B, that is, A permutes with every subnormal subgroup of B containing
$A \cap B$
and B permutes with every subnormal subgroup of A containing
$A \cap B$
. We obtain generalisations of known results on mutually
$sn$
-permutable products.
Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators
$\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$
for primes p and
$n \in \mathbb {N}$
, where G is a finite group and
$\chi $
is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.
We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a
$\mathbb {Z}\left [q^{\pm 1}\right ]$
-linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars
$e^{\lambda }$
, where
$\lambda $
is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type
$E_8$
. The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.
In this paper, we study the relation of the size of the class two quotients of a linear group and the size of the vector space. We answer a question raised in Keller and Yang [Class 2 quotients of solvable linear groups, J. Algebra 509 (2018), 386-396].
L'analyse de la démonstration par contradiction de Frécon 2018 qui est faite dans Poizat 2018 met en évidence la structure symétrique des groupes de rang de Morley fini sans involutions; en effet, cette démonstration consiste en la construction d'un espace symétrique de dimension deux (“un plan”), puis à montrer que ce plan ne peut exister.
Aux sous-espaces symétriques définissables de ces groupes sont associées des symétries et des transvexions, qu'on entreprend d'étudier ici dans l'abstrait, sans référence à un groupe qui les enveloppe; cela nous mène à considérer des structures introduites axiomatiquement que nous appelons symétrons (plutôt qu'ensembles symétriques diadiques, comme les ont nommées Lawson & Lim 2004).
Le
$Z^*$
-Theorem de Glauberman permet d'élucider complètement la structure des symétrons finis: chacun est isomorphe à l'ensemble des symétries associées à un sous-espace symétrique d'un groupe fini sans involutions, qui est loin d'être uniquement déterminé: de fait, il existe des groupes finis non isomorphes qui ont les mêmes symétries, et aussi des symétrons finis qui ne sont pas isomorphes aux symétries d'un groupe,
La situation est plus incertaine dans le cas des symétrons de rang de Morley fini, ou même algébriques, qui sont l'objet d'étude principal de cet article. Mais bien qu'un symétron soit une structure nettement plus faible qu'un groupe, nous pouvons étendre aux symétrons des résultats bien connus à propos des groupes de rang de Morley fini: condition de chaîne, décomposition en composantes connexes, caractérisation des parties définissables génériques, génération elliptique, etc. Ces propriétés sont nouvelles même dans le cas des sous-espaces symétriques d’un groupe, et permettent de court-circuiter les calculs de Frécon dans la construction de son plan paradoxal.
En outre, sous l'hypothèse de la Conjecture d'Algébricité, nous généralisons le Théorème de Glauberman au contexte de rang de Morley fini.
For any given subgroup H of a finite group G, the Quillen poset ${\mathcal {A}}_p(G)$ of nontrivial elementary abelian p-subgroups is obtained from ${\mathcal {A}}_p(H)$ by attaching elements via their centralisers in H. We exploit this idea to study Quillen’s conjecture, which asserts that if ${\mathcal {A}}_p(G)$ is contractible then G has a nontrivial normal p-subgroup. We prove that the original conjecture is equivalent to the ${{\mathbb {Z}}}$-acyclic version of the conjecture (obtained by replacing ‘contractible’ by ‘${{\mathbb {Z}}}$-acyclic’). We also work with the ${\mathbb {Q}}$-acyclic (strong) version of the conjecture, reducing its study to extensions of direct products of simple groups of p-rank at least $2$. This allows us to extend results of Aschbacher and Smith and to establish the strong conjecture for groups of p-rank at most $4$.