We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a character $\unicode[STIX]{x1D712}$ of a finite group $G$, the co-degree of $\unicode[STIX]{x1D712}$ is $\unicode[STIX]{x1D712}^{c}(1)=[G:\text{ker}\unicode[STIX]{x1D712}]/\unicode[STIX]{x1D712}(1)$. We study finite groups whose co-degrees of nonprincipal (complex) irreducible characters are divisible by a given prime $p$.
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$-arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $p$. This is a generalization to $\text{GL}_{3}$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $n$-dimensional Galois representations’, Duke Math. J.149(1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math.212(1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $\text{GL}_{3}(\mathbb{F}_{q})$.
We define and study cyclotomic quotients of affine Hecke algebras of type B. We establish an isomorphism between direct sums of blocks of these algebras and a generalization, for type B, of cyclotomic quiver Hecke algebras, which are a family of graded algebras closely related to algebras introduced by Varagnolo and Vasserot. Inspired by the work of Brundan and Kleshchev, we first give a family of isomorphisms for the corresponding result in type A which includes their original isomorphism. We then select a particular isomorphism from this family and use it to prove our result.
Let G be a finite group and σ = {σi| i ∈ I} some partition of the set of all primes
$\Bbb{P}$
. Then G is said to be: σ-primary if G is a σi-group for some i; σ-nilpotent if G = G1× … × Gt for some σ-primary groups G1, … , Gt; σ-soluble if every chief factor of G is σ-primary. We use
$G^{{\mathfrak{N}}_{\sigma}}$
to denote the σ-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N. If G is σ-soluble, then the σ-nilpotent length (denoted by lσ (G)) of G is the length of the shortest normal chain of G with σ-nilpotent factors. Let Nσ (G) be the intersection of the normalizers of the σ-nilpotent residuals of all subgroups of G, that is,
Then the subgroup Nσ (G) is called the σ-nilpotent norm of G. We study the relationship of the σ-nilpotent length with the σ-nilpotent norm of G. In particular, we prove that the σ-nilpotent length of a σ-soluble group G is at most r (r > 1) if and only if lσ (G/ Nσ (G)) ≤ r.
We enumerate the number of isoclinism classes of semi-extraspecial p-groups with derived subgroup of order p2. To do this, we enumerate GL (2, p)-orbits of sets of irreducible, monic polynomials in 𝔽p[x]. Along the way, we also provide a new construction of an infinite family of semi-extraspecial groups as central quotients of Heisenberg groups over local algebras.
We formulate a $q$-Schur algebra associated with an arbitrary $W$-invariant finite set $X_{\text{f}}$ of integral weights for a complex simple Lie algebra with Weyl group $W$. We establish a $q$-Schur duality between the $q$-Schur algebra and Hecke algebra associated with $W$. We then realize geometrically the $q$-Schur algebra and duality and construct a canonical basis for the $q$-Schur algebra with positivity. With suitable choices of $X_{\text{f}}$ in classical types, we recover the $q$-Schur algebras in the literature. Our $q$-Schur algebras are closely related to the category ${\mathcal{O}}$, where the type $G_{2}$ is studied in detail.
We develop the concept of character level for the complex irreducible characters of finite, general or special, linear and unitary groups. We give characterizations of the level of a character in terms of its Lusztig label and in terms of its degree. Then we prove explicit upper bounds for character values at elements with not-too-large centralizers and derive upper bounds on the covering number and mixing time of random walks corresponding to these conjugacy classes. We also characterize the level of the character in terms of certain dual pairs and prove explicit exponential character bounds for the character values, provided that the level is not too large. Several further applications are also provided. Related results for other finite classical groups are obtained in the sequel [Guralnick et al. ‘Character levels and character bounds for finite classical groups’, Preprint, 2019, arXiv:1904.08070] by different methods.
Denote by m(G) the largest size of a minimal generating set of a finite group G. We estimate m(G) in terms of $\sum _{p\in \pi (G)}d_p(G),$ where we are denoting by dp(G) the minimal number of generators of a Sylow p-subgroup of G and by π(G) the set of prime numbers dividing the order of G.
We provide a general program for finding nice arrangements of points in real or complex projective space from transitive actions of finite groups. In many cases, these arrangements are optimal in the sense of maximizing the minimum distance. We introduce our program in terms of general Schurian association schemes before focusing on the special case of Gelfand pairs. Notably, our program unifies a variety of existing packings with heretofore disparate constructions. In addition, we leverage our program to construct the first known infinite family of equiangular lines with Heisenberg symmetry.
The class of all monolithic (that is, subdirectly irreducible) groups belonging to a variety generated by a finite nilpotent group can be axiomatised by a finite set of elementary sentences.
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over $C$.
Let $p$ be a prime, $G$ a solvable group and $P$ a Sylow $p$-subgroup of $G$. We prove that $P$ is normal in $G$ if and only if $\unicode[STIX]{x1D711}(1)_{p}^{2}$ divides $|G:\ker (\unicode[STIX]{x1D711})|_{p}$ for all monomial monolithic irreducible $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
Let $p$ be an odd prime. We construct a $p$-group $P$ of nilpotency class two, rank seven and exponent $p$, such that $\text{Aut}(P)$ induces $N_{\text{GL}(7,p)}(G_{2}(p))=Z(\text{GL}(7,p))G_{2}(p)$ on the Frattini quotient $P/\unicode[STIX]{x1D6F7}(P)$. The constructed group $P$ is the smallest $p$-group with these properties, having order $p^{14}$, and when $p=3$ our construction gives two nonisomorphic $p$-groups. To show that $P$ satisfies the specified properties, we study the action of $G_{2}(q)$ on the octonion algebra over $\mathbb{F}_{q}$, for each power $q$ of $p$, and explore the reducibility of the exterior square of each irreducible seven-dimensional $\mathbb{F}_{q}[G_{2}(q)]$-module.
For a finite group $G$, let $\unicode[STIX]{x1D6E5}(G)$ denote the character graph built on the set of degrees of the irreducible complex characters of $G$. In this paper, we obtain a necessary and sufficient condition which guarantees that the complement of the character graph $\unicode[STIX]{x1D6E5}(G)$ of a finite group $G$ is a nonbipartite Hamiltonian graph.
We show that for all $m,k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever $L$ is a Latin square of order $m$ and the Cartesian product $L^{n}$ of $n$ copies of $L$ is $r$-coloured, there is a monochrome Latin subsquare of $L^{n}$, isotopic to $L^{k}$. In particular, for every prime $p$ and for all $k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever the multiplication table $L({\mathbb{Z}_{p}}^{n})$ of the group ${\mathbb{Z}_{p}}^{n}$ is $r$-coloured, there is a monochrome Latin subsquare of order $p^{k}$. On the other hand, we show that for every group $G$ of order $\leq 15$, there is a 2-colouring of $L(G)$ without a nontrivial monochrome Latin subsquare.
We introduce and study various categories of (equivariant) motives of (versal) flag varieties. We relate these categories with certain categories of parabolic (Demazure) modules. We show that the motivic decomposition type of a versal flag variety depends on the direct sum decomposition type of the parabolic module. To do this we use localization techniques of Kostant and Kumar in the context of generalized oriented cohomology as well as the Rost nilpotence principle for algebraic cobordism and its generic version. As an application, we obtain new proofs and examples of indecomposable Chow motives of versal flag varieties.
Let $G$ be a $p$-group and let $\unicode[STIX]{x1D712}$ be an irreducible character of $G$. The codegree of $\unicode[STIX]{x1D712}$ is given by $|G:\,\text{ker}(\unicode[STIX]{x1D712})|/\unicode[STIX]{x1D712}(1)$. If $G$ is a maximal class $p$-group that is normally monomial or has at most three character degrees, then the codegrees of $G$ are consecutive powers of $p$. If $|G|=p^{n}$ and $G$ has consecutive $p$-power codegrees up to $p^{n-1}$, then the nilpotence class of $G$ is at most 2 or $G$ has maximal class.