To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Geoffrey Robinson conjectured in 1996 that the $p$-part of character degrees in a $p$-block of a finite group can be bounded in terms of the center of a defect group of the block. We prove this conjecture for all primes $p\neq 2$ for all finite groups. Our argument relies on a reduction by Murai to the case of quasi-simple groups which are then studied using deep results on blocks of finite reductive groups.
We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.
We show a precise formula, in the form of a monomial, for certain families of parabolic Kazhdan–Lusztig polynomials of the symmetric group. The proof stems from results of Lapid–Mínguez on irreducibility of products in the Bernstein–Zelevinski ring. By quantizing those results into a statement on quantum groups and their canonical bases, we obtain identities of coefficients of certain transition matrices that relate Kazhdan–Lusztig polynomials to their parabolic analogues. This affirms some basic cases of conjectures raised recently by Lapid.
Let $G$ be a group, $p$ be a prime and $P\in \text{Syl}_{p}(G)$. We say that a $p$-Brauer character $\unicode[STIX]{x1D711}$ is monolithic if $G/\ker \unicode[STIX]{x1D711}$ is a monolith. We prove that $P$ is normal in $G$ if and only if $p\nmid \unicode[STIX]{x1D711}(1)$ for each monolithic Brauer character $\unicode[STIX]{x1D711}\in \text{IBr}(G)$. When $G$ is $p$-solvable, we also prove that $P$ is normal in $G$ and $G/P$ is nilpotent if and only if $\unicode[STIX]{x1D711}(1)^{2}$ divides $|G:\ker \unicode[STIX]{x1D711}|$ for all monolithic irreducible $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
Let $G$ be a finite group and let $\text{Irr}(G)$ be the set of all irreducible complex characters of $G$. Let $\unicode[STIX]{x1D70C}(G)$ be the set of all prime divisors of character degrees of $G$. The character degree graph $\unicode[STIX]{x1D6E5}(G)$ associated to $G$ is a graph whose vertex set is $\unicode[STIX]{x1D70C}(G)$, and there is an edge between two distinct primes $p$ and $q$ if and only if $pq$ divides $\unicode[STIX]{x1D712}(1)$ for some $\unicode[STIX]{x1D712}\in \text{Irr}(G)$. We prove that $\unicode[STIX]{x1D6E5}(G)$ is $k$-regular for some natural number $k$ if and only if $\overline{\unicode[STIX]{x1D6E5}}(G)$ is a regular bipartite graph.
We prove that if $\mathfrak{s}$ is a solvable Lie algebra of matrices over a field of characteristic 0 and $A\in \mathfrak{s}$, then the semisimple and nilpotent summands of the Jordan–Chevalley decomposition of $A$ belong to $\mathfrak{s}$ if and only if there exist $S,N\in \mathfrak{s}$, $S$ is semisimple, $N$ is nilpotent (not necessarily $[S,N]=0$) such that $A=S+N$.
We provide a complete classification of all algebras of generalized dihedral type, which are natural generalizations of algebras which occurred in the study of blocks of group algebras with dihedral defect groups. This gives a description by quivers and relations coming from surface triangulations.
Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with three distinct characteristic subgroups, namely 1, Gp and G. The quotient group G/Gp gives rise to an anti-commutative 𝔽p-algebra L such that the action of Aut (L) is irreducible on L; we call such an algebra IAC. This paper establishes a duality G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are semisimple and we classify the simple IAC algebras of dimension at most 4 over certain fields. We also give other examples of simple IAC algebras, including a family related to the m-th symmetric power of the natural module of SL(2, 𝔽).
A duality theorem for the stable module category of representations of a finite group scheme is proved. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$-local and $\mathfrak{p}$-torsion subcategories of the stable category, for each homogeneous prime ideal $\mathfrak{p}$ in the cohomology ring of the group scheme.
We finish the classification, begun in two earlier papers, of all simple fusion systems over finite nonabelian p-groups with an abelian subgroup of index p. In particular, this gives many new examples illustrating the enormous variety of exotic examples that can arise. In addition, we classify all simple fusion systems over infinite nonabelian discrete p-toral groups with an abelian subgroup of index p. In all of these cases (finite or infinite), we reduce the problem to one of listing all 𝔽pG-modules (for G finite) satisfying certain conditions: a problem which was solved in the earlier paper [15] using the classification of finite simple groups.
Let $G$ be a finite group and let $p$ be a prime factor of $|G|$. Suppose that $G$ is solvable and $P$ is a Sylow $p$-subgroup of $G$. In this note, we prove that $P{\vartriangleleft}G$ and $G/P$ is nilpotent if and only if $\unicode[STIX]{x1D711}(1)^{2}$ divides $|G:\ker \unicode[STIX]{x1D711}|$ for all irreducible monomial $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
For a group $G$, let $\unicode[STIX]{x1D6E4}(G)$ denote the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$. Let $\unicode[STIX]{x1D6E4}^{\ast }(G)$ be the subgraph of $\unicode[STIX]{x1D6E4}(G)$ that is induced by all the vertices of $\unicode[STIX]{x1D6E4}(G)$ that are not isolated. We prove that if $G$ is a 2-generated noncyclic abelian group, then $\unicode[STIX]{x1D6E4}^{\ast }(G)$ is connected. Moreover, $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=2$ if the torsion subgroup of $G$ is nontrivial and $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=\infty$ otherwise. If $F$ is the free group of rank 2, then $\unicode[STIX]{x1D6E4}^{\ast }(F)$ is connected and we deduce from $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(\mathbb{Z}\times \mathbb{Z}))=\infty$ that $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(F))=\infty$.
Baumslag and Wiegold have recently proven that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. Motivated by this surprisingly new result, we have obtained related results that just consider sets of prime divisors of element orders. For instance, the first of our main results asserts that G is nilpotent if and only if π(o(xy)) = π(o(x)o(y)) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold Theorem. While this result is still elementary, we also obtain local versions that, for instance, characterize the existence of a normal Sylow p-subgroup in terms of sets of prime divisors of element orders. These results are deeper and our proofs rely on results that depend on the classification of finite simple groups.
In this paper, we complete the ADE-like classification of simple transitive 2-representations of Soergel bimodules in finite dihedral type, under the assumption of gradeability. In particular, we use bipartite graphs and zigzag algebras of ADE type to give an explicit construction of a graded (non-strict) version of all these 2-representations.
Moreover, we give simple combinatorial criteria for when two such 2-representations are equivalent and for when their Grothendieck groups give rise to isomorphic representations.
Finally, our construction also gives a large class of simple transitive 2-representations in infinite dihedral type for general bipartite graphs.
In this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.
We consider ideals in a polynomial ring that are generated by regular sequences of homogeneous polynomials and are stable under the action of the symmetric group permuting the variables. In previous work, we determined the possible isomorphism types for these ideals. Following up on that work, we now analyze the possible degrees of the elements in such regular sequences. For each case of our classification, we provide some criteria guaranteeing the existence of regular sequences in certain degrees.
A problem in representation theory of $p$-adic groups is the computation of the Casselman basis of Iwahori fixed vectors in the spherical principal series representations, which are dual to the intertwining integrals. We shall express the transition matrix $(m_{u,v})$ of the Casselman basis to another natural basis in terms of certain polynomials that are deformations of the Kazhdan–Lusztig R-polynomials. As an application we will obtain certain new functional equations for these transition matrices under the algebraic involution sending the residue cardinality $q$ to $q^{-1}$. We will also obtain a new proof of a surprising result of Nakasuji and Naruse that relates the matrix $(m_{u,v})$ to its inverse.
Let F be a field of characteristic two and G a finite abelian 2-group with an involutory automorphism η. If G = H × D with non-trivial subgroups H and D of G such that η inverts the elements of H (H without a direct factor of order 2) and fixes D element-wise, then the linear extension of η to the group algebra FG is called a nice involution. This determines the groups of unitary and symmetric normalized units of FG. We calculate the orders and the invariants of these subgroups.
Let $q$ be a prime and let $A$ be an elementary abelian group of order at least $q^{3}$ acting by automorphisms on a finite $q^{\prime }$-group $G$. We prove that if $|\unicode[STIX]{x1D6FE}_{\infty }(C_{G}(a))|\leq m$ for any $a\in A^{\#}$, then the order of $\unicode[STIX]{x1D6FE}_{\infty }(G)$ is $m$-bounded. If $F(C_{G}(a))$ has index at most $m$ in $C_{G}(a)$ for any $a\in A^{\#}$, then the index of $F_{2}(G)$ is $m$-bounded.
We investigate the structure of root data by considering their decomposition as a product of a semisimple root datum and a torus. Using this decomposition, we obtain a parametrization of the isomorphism classes of all root data. By working at the level of root data, we introduce the notion of a smooth regular embedding of a connected reductive algebraic group, which is a refinement of the commonly used regular embeddings introduced by Lusztig. In the absence of Steinberg endomorphisms, such embeddings were constructed by Benjamin Martin. In an unpublished manuscript, Asai proved three key reduction techniques that are used for reducing statements about arbitrary connected reductive algebraic groups, equipped with a Frobenius endomorphism, to those whose derived subgroup is simple and simply connected. Using our investigations into root data we give new proofs of Asai's results and generalize them so that they are compatible with Steinberg endomorphisms. As an illustration of these ideas, we answer a question posed to us by Olivier Dudas concerning unipotent supports.