We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We finish the classification, begun in two earlier papers, of all simple fusion systems over finite nonabelian p-groups with an abelian subgroup of index p. In particular, this gives many new examples illustrating the enormous variety of exotic examples that can arise. In addition, we classify all simple fusion systems over infinite nonabelian discrete p-toral groups with an abelian subgroup of index p. In all of these cases (finite or infinite), we reduce the problem to one of listing all 𝔽pG-modules (for G finite) satisfying certain conditions: a problem which was solved in the earlier paper [15] using the classification of finite simple groups.
Let $G$ be a finite group and let $p$ be a prime factor of $|G|$. Suppose that $G$ is solvable and $P$ is a Sylow $p$-subgroup of $G$. In this note, we prove that $P{\vartriangleleft}G$ and $G/P$ is nilpotent if and only if $\unicode[STIX]{x1D711}(1)^{2}$ divides $|G:\ker \unicode[STIX]{x1D711}|$ for all irreducible monomial $p$-Brauer characters $\unicode[STIX]{x1D711}$ of $G$.
For a group $G$, let $\unicode[STIX]{x1D6E4}(G)$ denote the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$. Let $\unicode[STIX]{x1D6E4}^{\ast }(G)$ be the subgraph of $\unicode[STIX]{x1D6E4}(G)$ that is induced by all the vertices of $\unicode[STIX]{x1D6E4}(G)$ that are not isolated. We prove that if $G$ is a 2-generated noncyclic abelian group, then $\unicode[STIX]{x1D6E4}^{\ast }(G)$ is connected. Moreover, $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=2$ if the torsion subgroup of $G$ is nontrivial and $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=\infty$ otherwise. If $F$ is the free group of rank 2, then $\unicode[STIX]{x1D6E4}^{\ast }(F)$ is connected and we deduce from $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(\mathbb{Z}\times \mathbb{Z}))=\infty$ that $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(F))=\infty$.
Baumslag and Wiegold have recently proven that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. Motivated by this surprisingly new result, we have obtained related results that just consider sets of prime divisors of element orders. For instance, the first of our main results asserts that G is nilpotent if and only if π(o(xy)) = π(o(x)o(y)) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold Theorem. While this result is still elementary, we also obtain local versions that, for instance, characterize the existence of a normal Sylow p-subgroup in terms of sets of prime divisors of element orders. These results are deeper and our proofs rely on results that depend on the classification of finite simple groups.
In this paper, we complete the ADE-like classification of simple transitive 2-representations of Soergel bimodules in finite dihedral type, under the assumption of gradeability. In particular, we use bipartite graphs and zigzag algebras of ADE type to give an explicit construction of a graded (non-strict) version of all these 2-representations.
Moreover, we give simple combinatorial criteria for when two such 2-representations are equivalent and for when their Grothendieck groups give rise to isomorphic representations.
Finally, our construction also gives a large class of simple transitive 2-representations in infinite dihedral type for general bipartite graphs.
In this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.
We consider ideals in a polynomial ring that are generated by regular sequences of homogeneous polynomials and are stable under the action of the symmetric group permuting the variables. In previous work, we determined the possible isomorphism types for these ideals. Following up on that work, we now analyze the possible degrees of the elements in such regular sequences. For each case of our classification, we provide some criteria guaranteeing the existence of regular sequences in certain degrees.
A problem in representation theory of $p$-adic groups is the computation of the Casselman basis of Iwahori fixed vectors in the spherical principal series representations, which are dual to the intertwining integrals. We shall express the transition matrix $(m_{u,v})$ of the Casselman basis to another natural basis in terms of certain polynomials that are deformations of the Kazhdan–Lusztig R-polynomials. As an application we will obtain certain new functional equations for these transition matrices under the algebraic involution sending the residue cardinality $q$ to $q^{-1}$. We will also obtain a new proof of a surprising result of Nakasuji and Naruse that relates the matrix $(m_{u,v})$ to its inverse.
Let F be a field of characteristic two and G a finite abelian 2-group with an involutory automorphism η. If G = H × D with non-trivial subgroups H and D of G such that η inverts the elements of H (H without a direct factor of order 2) and fixes D element-wise, then the linear extension of η to the group algebra FG is called a nice involution. This determines the groups of unitary and symmetric normalized units of FG. We calculate the orders and the invariants of these subgroups.
Let $q$ be a prime and let $A$ be an elementary abelian group of order at least $q^{3}$ acting by automorphisms on a finite $q^{\prime }$-group $G$. We prove that if $|\unicode[STIX]{x1D6FE}_{\infty }(C_{G}(a))|\leq m$ for any $a\in A^{\#}$, then the order of $\unicode[STIX]{x1D6FE}_{\infty }(G)$ is $m$-bounded. If $F(C_{G}(a))$ has index at most $m$ in $C_{G}(a)$ for any $a\in A^{\#}$, then the index of $F_{2}(G)$ is $m$-bounded.
We investigate the structure of root data by considering their decomposition as a product of a semisimple root datum and a torus. Using this decomposition, we obtain a parametrization of the isomorphism classes of all root data. By working at the level of root data, we introduce the notion of a smooth regular embedding of a connected reductive algebraic group, which is a refinement of the commonly used regular embeddings introduced by Lusztig. In the absence of Steinberg endomorphisms, such embeddings were constructed by Benjamin Martin. In an unpublished manuscript, Asai proved three key reduction techniques that are used for reducing statements about arbitrary connected reductive algebraic groups, equipped with a Frobenius endomorphism, to those whose derived subgroup is simple and simply connected. Using our investigations into root data we give new proofs of Asai's results and generalize them so that they are compatible with Steinberg endomorphisms. As an illustration of these ideas, we answer a question posed to us by Olivier Dudas concerning unipotent supports.
We examine situations, where representations of a finite-dimensional F-algebra A defined over a separable extension field K/F, have a unique minimal field of definition. Here the base field F is assumed to be a field of dimension ≼1. In particular, F could be a finite field or k(t) or k((t)), where k is algebraically closed. We show that a unique minimal field of definition exists if (a) K/F is an algebraic extension or (b) A is of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension of F. This is not the case if A is of infinite representation type or F fails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.
We investigate the Galois structures of $p$-adic cohomology groups of general $p$-adic representations over finite extensions of number fields. We show, in particular, that as the field extensions vary over natural families the Galois modules formed by these cohomology groups always decompose as the direct sum of a projective module and a complementary module of bounded $p$-rank. We use this result to derive new (upper and lower) bounds on the changes in ranks of Selmer groups over extensions of number fields and descriptions of the explicit Galois structures of natural arithmetic modules.
Let $G$ be a finite group and $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ some partition of the set of all primes $\mathbb{P}$, that is, $\mathbb{P}=\bigcup _{i\in I}\unicode[STIX]{x1D70E}_{i}$ and $\unicode[STIX]{x1D70E}_{i}\cap \unicode[STIX]{x1D70E}_{j}=\emptyset$ for all $i\neq j$. We say that $G$ is $\unicode[STIX]{x1D70E}$-primary if $G$ is a $\unicode[STIX]{x1D70E}_{i}$-group for some $i$. A subgroup $A$ of $G$ is said to be: $\unicode[STIX]{x1D70E}$-subnormal in$G$ if there is a subgroup chain $A=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G$ such that either $A_{i-1}\unlhd A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $\unicode[STIX]{x1D70E}$-primary for all $i=1,\ldots ,n$; modular in$G$ if the following conditions hold: (i) $\langle X,A\cap Z\rangle =\langle X,A\rangle \cap Z$ for all $X\leq G,Z\leq G$ such that $X\leq Z$ and (ii) $\langle A,Y\cap Z\rangle =\langle A,Y\rangle \cap Z$ for all $Y\leq G,Z\leq G$ such that $A\leq Z$; and $\unicode[STIX]{x1D70E}$-quasinormal in$G$ if $A$ is modular and $\unicode[STIX]{x1D70E}$-subnormal in $G$. We study $\unicode[STIX]{x1D70E}$-quasinormal subgroups of $G$. In particular, we prove that if a subgroup $H$ of $G$ is $\unicode[STIX]{x1D70E}$-quasinormal in $G$, then every chief factor $H/K$ of $G$ between $H^{G}$ and $H_{G}$ is $\unicode[STIX]{x1D70E}$-central in$G$, that is, the semidirect product $(H/K)\rtimes (G/C_{G}(H/K))$ is $\unicode[STIX]{x1D70E}$-primary.
In this paper we study the behavior of the first Zassenhaus conjecture (ZC1) under direct products, as well as the General Bovdi Problem (Gen-BP), which turns out to be a slightly weaker variant of (ZC1). Among other things, we prove that (Gen-BP) holds for Sylow tower groups, and so in particular for the class of supersolvable groups.
(ZC1) is established for a direct product of Sylow-by-abelian groups provided the normal Sylow subgroups form together a Hall subgroup. We also show (ZC1) for certain direct products with one of the factors a Frobenius group.
We extend the classical HeLP method to group rings with coefficients from any ring of algebraic integers. This is used to study (ZC1) for the direct product $G\times A$, where $A$ is a finite abelian group and $G$ has order at most 95. For most of these groups we show that (ZC1) is valid and for all of them that (Gen-BP) holds. Moreover, we also prove that (Gen-BP) holds for the direct product of a Frobenius group with any finite abelian group.
Let A and G be finite groups and suppose that A acts via automorphisms on G with $(|A|, |G|)=1$. We study how certain conditions on the Sylow 2-subgroups of the fixed point subgroup of the action $C_G(A)$ may imply the non-simplicity or solubility of G.
The equational complexity function $\beta \nu \,:\,{\open N} \to {\open N}$ of an equational class of algebras bounds the size of equation required to determine the membership of n-element algebras in . Known examples of finitely generated varieties with unbounded equational complexity have growth in Ω(nc), usually for c ≥ (1/2). We show that much slower growth is possible, exhibiting $O(\log_{2}^{3}(n))$ growth among varieties of semilattice-ordered inverse semigroups and additive idempotent semirings. We also examine a quasivariety analogue of equational complexity, and show that a finite group has polylogarithmic quasi-equational complexity function, bounded if and only if all Sylow subgroups are abelian.
We describe completely the link invariants constructed using Markov traces on the Yokonuma–Hecke algebras in terms of the linking matrix and the Hoste–Ocneanu–Millett–Freyd–Lickorish–Yetter–Przytycki–Traczyk (HOMFLY-PT) polynomials of sublinks.
Let $T$ be a finite simple group of Lie type in characteristic $p$, and let $S$ be a Sylow subgroup of $T$ with maximal order. It is well known that $S$ is a Sylow $p$-subgroup except for an explicit list of exceptions and that $S$ is always ‘large’ in the sense that $|T|^{1/3}<|S|\leq |T|^{1/2}$. One might anticipate that, moreover, the Sylow $r$-subgroups of $T$ with $r\neq p$ are usually significantly smaller than $S$. We verify this hypothesis by proving that, for every $T$ and every prime divisor $r$ of $|T|$ with $r\neq p$, the order of the Sylow $r$-subgroup of $T$ is at most $|T|^{2\lfloor \log _{r}(4(\ell +1)r)\rfloor /\ell }=|T|^{O(\log _{r}(\ell )/\ell )}$, where $\ell$ is the Lie rank of $T$.
A subgroup $H$ is called a weak second maximal subgroup of $G$ if $H$ is a maximal subgroup of a maximal subgroup of $G$. Let $m(G,H)$ denote the number of maximal subgroups of $G$ containing $H$. We prove that $m(G,H)-1$ divides the index of some maximal subgroup of $G$ when $H$ is a weak second maximal subgroup of $G$. This partially answers a question of Flavell [‘Overgroups of second maximal subgroups’, Arch. Math.64(4) (1995), 277–282] and extends a result of Pálfy and Pudlák [‘Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups’, Algebra Universalis11(1) (1980), 22–27].