We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The codegree of an irreducible character $\chi $ of a finite group G is $|G : \ker \chi |/\chi (1)$. We show that the Ree group ${}^2G_2(q)$, where $q = 3^{2f+1}$, is determined up to isomorphism by its set of codegrees.
We study the compatibility of the action of the DAHA of type GL with two inverse systems of polynomial rings obtained from the standard Laurent polynomial representations. In both cases, the crucial analysis is that of the compatibility of the action of the Cherednik operators. Each case leads to a representation of a limit structure (the +/– stable limit DAHA) on a space of almost symmetric polynomials in infinitely many variables (the standard representation). As an application, we show that the defining representation of the double Dyck path algebra arises from the standard representation of the +stable limit DAHA.
Gagola and Lewis [‘A character theoretic condition characterizing nilpotent groups’, Comm. Algebra27 (1999), 1053–1056] proved that a finite group G is nilpotent if and only if $\chi (1)^{2}$ divides $\lvert G:\textrm {ker}\,\chi \rvert $ for every irreducible character $\chi $ of G. The theorem was later generalised by using monolithic characters. We generalise the theorem further considering only strongly monolithic characters. We also give some criteria for solvability and nilpotency of finite groups by their strongly monolithic characters.
We state a sufficient condition for a fusion system to be saturated. This is then used to investigate localities with kernels: that is, localities that are (in a particular way) extensions of groups by localities. As an application of these results, we define and study certain products in fusion systems and localities, thus giving a new method to construct saturated subsystems of fusion systems.
The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
We describe finite soluble nonnilpotent groups in which every minimal nonnilpotent subgroup is abnormal. We also show that if G is a nonsoluble finite group in which every minimal nonnilpotent subgroup is abnormal, then G is quasisimple and
$Z(G)$
is cyclic of order
$|Z(G)|\in \{1, 2, 3, 4\}$
.
Given a finite group G, we denote by
$L(G)$
the subgroup lattice of G and by
${\cal CD}(G)$
the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that
$|{\cal CD}(G)|=|L(G)|-k$
, for
$k=1,2$
.
Let q be a nontrivial odd prime power, and let
$n \ge 2$
be a natural number with
$(n,q) \ne (2,3)$
. We characterize the groups
$PSL_n(q)$
and
$PSU_n(q)$
by their
$2$
-fusion systems. This contributes to a programme of Aschbacher aiming at a simplified proof of the classification of finite simple groups.
In this note, we investigate some products of subgroups and vanishing conjugacy class sizes of finite groups. We prove some supersolubility criteria for groups with restrictions on the vanishing conjugacy class sizes of their subgroups.
Let K be an infinite field of characteristic $p>0$ and let $\lambda, \mu$ be partitions, where $\mu$ has two parts. We find sufficient arithmetic conditions on $p, \lambda, \mu$ for the existence of a nonzero homomorphism $\Delta(\lambda) \to \Delta (\mu)$ of Weyl modules for the general linear group $GL_n(K)$. Also, for each p we find sufficient conditions so that the corresponding homomorphism spaces have dimension at least 2.
The Alperin–McKay conjecture is a longstanding open conjecture in the representation theory of finite groups. Späth showed that the Alperin–McKay conjecture holds if the so-called inductive Alperin–McKay (iAM) condition holds for all finite simple groups. In a previous paper, the author has proved that it is enough to verify the inductive condition for quasi-isolated blocks of groups of Lie type. In this paper, we show that the verification of the iAM-condition can be further reduced in many cases to isolated blocks. As a consequence of this, we obtain a proof of the Alperin–McKay conjecture for
$2$
-blocks of finite groups with abelian defect.
Let
$\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$
be the character table for
$S_n,$
where the indices
$\lambda $
and
$\mu $
run over the
$p(n)$
many integer partitions of
$n.$
In this note, we study
$Z_{\ell }(n),$
the number of zero entries
$\chi _{\lambda }(\mu )$
in
$\mathcal {C}_n,$
where
$\lambda $
is an
$\ell $
-core partition of
$n.$
For every prime
$\ell \geq 5,$
we prove an asymptotic formula of the form
where
$\sigma _{\ell }(n)$
is a twisted Legendre symbol divisor function,
$\delta _{\ell }:=(\ell ^2-1)/24,$
and
$1/\alpha _{\ell }>0$
is a normalization of the Dirichlet L-value
$L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$
For primes
$\ell $
and
$n>\ell ^6/24,$
we show that
$\chi _{\lambda }(\mu )=0$
whenever
$\lambda $
and
$\mu $
are both
$\ell $
-cores. Furthermore, if
$Z^*_{\ell }(n)$
is the number of zero entries indexed by two
$\ell $
-cores, then, for
$\ell \geq 5$
, we obtain the asymptotic
Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$, $\mathrm {Sp}(2n)$, and $\mathrm {O}(2n)$.
The Chermak–Delgado lattice of a finite group G is a self-dual sublattice of the subgroup lattice of G. In this paper, we prove that, for any finite abelian group A, there exists a finite group G such that the Chermak–Delgado lattice of G is a subgroup lattice of A.
We present a family of counterexamples to a question proposed recently by Moretó concerning the character codegrees and the element orders of a finite solvable group.
Let
$\eta (G)$
be the number of conjugacy classes of maximal cyclic subgroups of G. We prove that if G is a p-group of order
$p^n$
and nilpotence class l, then
$\eta (G)$
is bounded below by a linear function in
$n/l$
.