To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain an adaptation of Dade’s Conjecture and Späth’s Character Triple Conjecture to unipotent characters of simple, simply connected finite reductive groups of type $\mathbf {A}$, $\mathbf {B}$ and $\mathbf {C}$. In particular, this gives a precise formula for counting the number of unipotent characters of each defect d in any Brauer $\ell $-block B in terms of local invariants associated to e-local structures. This provides a geometric version of the local-global principle in representation theory of finite groups. A key ingredient in our proof is the construction of certain parametrisations of unipotent generalised Harish-Chandra series that are compatible with isomorphisms of character triples.
We establish a McKay correspondence for finite and linearly reductive subgroup schemes of ${\mathbf {SL}}_2$ in positive characteristic. As an application, we obtain a McKay correspondence for all rational double point singularities in characteristic $p\geq 7$. We discuss linearly reductive quotient singularities and canonical lifts over the ring of Witt vectors. In dimension 2, we establish simultaneous resolutions of singularities of these canonical lifts via G-Hilbert schemes. In the appendix, we discuss several approaches towards the notion of conjugacy classes for finite group schemes: This is an ingredient in McKay correspondences, but also of independent interest.
We investigate neighbourhood sizes in the enhanced power graph (also known as the cyclic graph) associated with a finite group. In particular, we characterise finite p-groups with the smallest maximum size for neighbourhoods of a nontrivial element in its enhanced power graph.
We prove a result that relates the number of homomorphisms from the fundamental group of a compact nonorientable surface to a finite group G, where conjugacy classes of the boundary components of the surface must map to prescribed conjugacy classes in G, to a sum over values of irreducible characters of G weighted by Frobenius-Schur multipliers. The proof is structured so that the corresponding results for closed and possibly orientable surfaces, as well as some generalizations, are derived using the same methods. We then apply these results to the specific case of the symmetric group.
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted $\Sigma _L(P)$, is a left weak Bruhat interval in the symmetric group $\mathfrak {S}_{|P|}$. We describe the permutations in $\Sigma _L(P)$ in terms of reading words of standard Young tableaux when P is a regular Schur labeled skew shape poset, and classify $\Sigma _L(P)$’s up to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape posets. The results obtained are then applied to classify the $0$-Hecke modules $\mathsf {M}_P$ associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of $\mathfrak {S}_{|P|}$. Using this characterization, we construct distinguished filtrations of $\mathsf {M}_P$ with respect to the Schur basis when P is a regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the $0$-Hecke modules $\mathsf {M}_P$ are also discussed.
In this paper, the authors introduce a new notion called the quantum wreath product, which is the algebra $B \wr _Q \mathcal {H}(d)$ produced from a given algebra B, a positive integer d and a choice $Q=(R,S,\rho ,\sigma )$ of parameters. Important examples that arise from our construction include many variants of the Hecke algebras, such as the Ariki–Koike algebras, the affine Hecke algebras and their degenerate version, Wan–Wang’s wreath Hecke algebras, Rosso–Savage’s (affine) Frobenius Hecke algebras, Kleshchev–Muth’s affine zigzag algebras and the Hu algebra that quantizes the wreath product $\Sigma _m \wr \Sigma _2$ between symmetric groups.
In the first part of the paper, the authors develop a structure theory for the quantum wreath products. Necessary and sufficient conditions for these algebras to afford a basis of suitable size are obtained. Furthermore, a Schur–Weyl duality is established via a splitting lemma and mild assumptions on the base algebra B. Our uniform approach encompasses many known results which were proved in a case by case manner. The second part of the paper involves the problem of constructing natural subalgebras of Hecke algebras that arise from wreath products. Moreover, a bar-invariant basis of the Hu algebra via an explicit formula for its extra generator is also described.
We settle the question of where exactly do the reduced Kronecker coefficients lie on the spectrum between the Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric group is equal to a reduced Kronecker coefficient by an explicit construction. This implies the equivalence of an open problem by Stanley from 2000 and an open problem by Kirillov from 2004 about combinatorial interpretations of these two families of coefficients. Moreover, as a corollary, we deduce that deciding the positivity of reduced Kronecker coefficients is ${\textsf {NP}}$-hard, and computing them is ${{{\textsf {#P}}}}$-hard under parsimonious many-one reductions. Our proof also provides an explicit isomorphism of the corresponding highest weight vector spaces.
For any prime p and S a p-group isomorphic to a Sylow p-subgroup of a rank $2$ simple group of Lie type in characteristic p, we determine all saturated fusion systems supported on S up to isomorphism.
Let $X=GC$ be a group, where C is a cyclic group and G is either a generalized quaternion group or a dihedral group such that $C\cap G=1$. In this paper, X is characterized and, moreover, a complete classification for $X$ is given, provided that G is a generalized quaternion group and C is core-free.
Let G be a finite group and let $\chi $ be an irreducible character of G. The number $|G:\mathrm {ker}\chi |/\chi (1)$ is called the codegree of the character $\chi $. We provide several relations between the structure of G and the codegrees of the characters in a given subset of $\mathrm {Irr}(G)$, where $\mathrm {Irr}(G)$ is the set of all complex irreducible characters of G. For example, we show that if the codegrees of all strongly monolithic characters of G are odd, then G is solvable, analogous to the well-known fact that if all irreducible character degrees of a finite group are odd, then that group is solvable.
In this article, we study rational matrix representations of VZ p-groups (p is any prime). Using our findings on VZ p-groups, we explicitly obtain all inequivalent irreducible rational matrix representations of all p-groups of order $\leq p^4$. Furthermore, we establish combinatorial formulae to determine the Wedderburn decompositions of rational group algebras for VZ p-groups and all p-groups of order $\leq p^4$, ensuring simplicity in the process.
Let G be a finite solvable group. We prove that if $\chi\in{{\operatorname{Irr}}}(G)$ has odd degree and $\chi(1)$ is the minimal degree of the nonlinear irreducible characters of G, then $G/\operatorname{Ker}\chi$ is nilpotent-by-abelian.
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$. The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.
We study covering numbers of subsets of the symmetric group $S_n$ that exhibit closure under conjugation, known as normal sets. We show that for any $\epsilon>0$, there exists $n_0$ such that if $n>n_0$ and A is a normal subset of the symmetric group $S_n$ of density $\ge e^{-n^{2/5 - \epsilon }}$, then $A^2 \supseteq A_n$. This improves upon a seminal result of Larsen and Shalev (Inventiones Math., 2008), with our $2/5$ in the double exponent replacing their $1/4$.
Our proof strategy combines two types of techniques. The first is ‘traditional’ techniques rooted in character bounds and asymptotics for the Witten zeta function, drawing from the foundational works of Liebeck–Shalev, Larsen–Shalev, and more recently, Larsen–Tiep. The second is a sharp hypercontractivity theorem in the symmetric group, which was recently obtained by Keevash and Lifshitz. This synthesis of algebraic and analytic methodologies not only allows us to attain our improved bounds but also provides new insights into the behavior of general independent sets in normal Cayley graphs over symmetric groups.
Let $\alpha $ be a complex valued $2$-cocycle of finite order of a finite group $G.$ The nth Frobenius–Schur indicator of an irreducible $\alpha $-character of G is defined and its properties are investigated. The indicator is interpreted in general for $n =2$ and it is shown that it can be used to determine whether an irreducible $\alpha $-character is real-valued under the assumption that the order of $\alpha $ and its cohomology class are both $2$. A formula, involving the real $\alpha $-regular conjugacy classes of $G,$ is found to count the number of real-valued irreducible $\alpha $-characters of G under the additional assumption that these characters are class functions.
We settle the noninner automorphism conjecture for finite p-groups ($p> 2$) with certain conditions. Also, we give an elementary and short proof of the main result of Ghoraishi [‘On noninner automorphisms of finite nonabelian p-groups’, Bull. Aust. Math. Soc.89(2) (2014) 202–209].
The structure of groups in which every element has prime power order (CP-groups) is extensively studied. We first investigate the properties of group $G$ such that each element of $G\setminus N$ has prime power order. It is proved that $N$ is solvable or every non-solvable chief factor $H/K$ of $G$ satisfying $H\leq N$ is isomorphic to $PSL_2(3^f)$ with $f$ a 2-power. This partially answers the question proposed by Lewis in 2023, asking whether $G\cong M_{10}$? Furthermore, we prove that if each element $x\in G\backslash N$ has prime power order and ${\bf C}_G(x)$ is maximal in $G$, then $N$ is solvable. Relying on this, we give the structure of group $G$ with normal subgroup $N$ such that ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in G\setminus N$. Finally, we investigate the structure of a normal subgroup $N$ when the centralizer ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in N\setminus {\bf Z}(N)$, which is a generalization of results of Zhao, Chen, and Guo in 2020, investigating a special case that $N=G$ for our main result. We also provide a new proof for Zhao, Chen, and Guo's results above.