To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a unitary group of rank one over a non-archimedean local field K (whose residue field has a characteristic ≠ 2). We consider the action of G on the projective plane. A G(K) equivariant map from the set of points in the projective plane that are semistable for every maximal K split torus in G to the set of convex subsets of the building of G(K) is constructed. This map gives rise to an equivariant map from the set of points that are stable for every maximal K split torus to the building. Using these maps one describes a G(K) invariant pure affinoid covering of the set of stable points. The reduction of the affinoid covering is given.
We study commutators in pseudo-orthogonal groups O2nR (including unitary, symplectic, and ordinary orthogonal groups) and in the conformal pseudo-orthogonal groups GO2nR. We estimate the number of commutators, c(O2nR) and c(GO2nR), needed to represent every element in the commutator subgroup. We show that c(O2nR) ≤ 4 if R satisfies the ∧-stable condition and either n ≥ 3 or n = 2 and 1 is the sum of two units in R, and that c(GO2nR) ≤ 3 when the involution is trivial and ∧ = R∈. We also show that c(O2nR) ≤ 3 and c(GO2nR) ≤ 2 for the ordinary orthogonal group O2nR over a commutative ring R of absolute stable rank 1 where either n ≥ 3 or n = 2 and 1 is the sum of two units in R.
If R is a 2-group of symplectic type with exponent 4, then R is isomorphic to the extraspecial group , or to the central product 4 o 21+2n of a cyclic group of order 4 and an extraspecial group, with central subgroups of order 2 amalgamated. This paper gives an explicit description of a projective representation of the group A of automorphisms of R centralizing Z(R), obtained from a faithful representation of R of degree 2n. The 2-cocycle associated with this projective representation takes values which are powers of −1 if R is isomorphic to and powers of otherwise. This explicit description of a projective representation is useful for computing character values or computing with central extensions of A. Such central extensions arise naturally in Aschbacher's classification of the subgroups of classical groups.
Let G be a connected reductive linear algebraic group over the complex numbers. For any element A of the Lie algebra of G, there is an action of the Weyl group W on the cohomology Hi(BA) of the subvariety BA (see below for the definition) of the flag variety of G. We study this action and prove an inequality for the multiplicity of the Weyl group representations which occur ((4.8) below). This involves geometric data. This inequality is applied to determine the multiplicity of the reflection representation of W when A is a nilpotent element of “parabolic type”. In particular this multiplicity is related to the geometry of the corresponding hyperplane complement.
We give presentations for the groups PSL(2, pn), p prime, which show that the deficiency of these groups is bounded below. In particular, for p = 2 where SL(2, 2n) = PSL(2, 2n), we show that these groups have deficiency greater than or equal to – 2. We give deficiency – 1 presentations for direct products of SL(2, 2n) for coprime ni. Certain new efficient presentations are given for certain cases of the groups considered.
It has been shown by one of the authors that the system of idempotents of monoids on a group G of Lie type with Dynkin diagram Γ can be classified by the following data: a partially ordered set U with maximum element 1 and a map λ: U → 2Γ with λ(1) = Γ and with the property that for all J1, J2, J3 ∈ U with J1 > J2 > J3, any connected component of λ(J2) is contained in either λ(J1) or λ(J3). In this paper we show that λ comes from a regular monoid if and only if the following conditions are satisfied: (1) U is a ∧-semilattice; (2) If J1, J2 ∈ U, then λ(J1)∧ λ(J2) λ(J1 ∧ J2); (3) If θ ∈ Γ, J ∈ U, then max{J1 ∈ U|J1 > J, θ ∈ λ (J1)} exists; (4) If J1, J2 ∈ U with J1 > J2 and if X is a two element discrete subset of λ(J1) ∪ λ(J2), then X λ(J) for some J ∈ UJ with J1 > J > J2.
A filtration is constructed for each dual Weyl module of a connected reductive group in prime characteristic p, and the quotients of the filtration are identified when the highest weight is far enough from the walls of the dominant chamber. The existence of certain composition factors is deduced.
For any group G, we introduce the subset S(G) of elements g which are conjugate to for some positive integer k. We show that, for any bounded representation π of G any g in S(G), either π(g) = 1 or the spectrum of π(g) is the full unit circle in C. As a corollary, S(G) is in the kernel of any homomorphism from G to the unitary group of a post-liminal C*-algebra with finite composition series.
Next, for a topological group G, we consider the subset of elements approximately conjugate to 1, and we prove that it is contained in the kernel of any uniformly continuous bounded representation of G, and of any strongly continuous unitary representation in a finite von Neumann algebra.
We apply these results to prove triviality for a number of representations of isotropic simple algebraic groups defined over various fields.
The classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.
In this paper we investigate the p-periodicity of the S-arithmetic groups G = GL(n, Os(K)) and G1 = SL(n, Os(K)) where Os(K) is the ring of S-integers of a number field K (cf. [12, 13]; S is a finite set of places in K including the infinite places). These groups are known to be virtually of finite (cohomological) dimension, and thus the concept of p-periodicity is defined; it refers to a rational prime p and to the p-primary component Ĥi(G, A, p) of the Farrell-Tate cohomology Ĥi(G, A) with respect to an arbitrary G-module A. We recall that Ĥi coincides with the usual cohomology Hi for all i above the virtual dimension of G, and that in the case of a finite group (i.e., a group of virtual dimension zero) the Ĥi, i ∈ℤ, are the usual Tate cohomology groups. The group G is called p-periodic if Ĥi(G, A, p) is periodic in i, for all A, and the smallest corresponding period is then simply called the p-period of G. If G has no p-torsion, the p-primary component of all its Ĥi is 0, and thus G is trivially p-periodic.
If Sp(V) is the symplectic group of a vector space V over a finite field of characteristic p, and r is a positive integer, the abelian p-subgroups of largest order in Sp(V) whose fixed subspaces in V have dimension at least r were determined in the preceding paper, in the case p ≠ 2. Here we deal with the case p = 2. Our results also complete earlier work on the orthogonal groups.
If G is the unitary group U(V) or the symplectic group Sp(V) of a vector space V over a finite field of characteristic p, and r is a positive integer, we determine the abelian p-subgroups of largest order in G whose fixed subspaces in V have dimension at least r, with the restriction that we assume p ≠ 2 in the symplectic case. In particular, we determine the abelian subgroups of largest order in a Sylow p-subgroup of G. Our results complement earlier work on general linear and orthogonal groups.
If G is the special orthogonal group O+(V) of a quadratic space V over a finite field of characteristic p, and r is a positive integer, we determine the abelian p-subgroups of largest order in G whose fixed subspaces in V have dimension at least r. In particular, we determine the abelian subgroups of largest order in a Sylow p-subgroup of G, extending some results obtained with different methods by Barry (1979).
If w is a group word in n variables, x1,…,xn, then R. Horowitz has proved that under an arbitrary mapping of these variables into a two-dimensional special linear group, the trace of the image of w can be expressed as a polynomial with integer coefficients in traces of the images of 2n−1 products of the form xσ1xσ2…xσm 1 ≤ σ1 < σ2 <… <σm ≤ n. A refinement of this result is proved which shows that such trace polynomials fall into 2n classes corresponding to a division of n-variable words into 2n classes. There is also a discussion of conditions which two words must satisfy if their images have the same trace for any mapping of their variables into a two-dimensional special linear group over a ring of characteristic zero.
Let g be a connected reductive linear algebraic group, and let G = gσ be the finite subgroup of fixed points, where σ is the generalized Frobenius endomorphism of g. Let x be a regular semisimple element of G and let w be a corresponding element of the Weyl group W. In this paper we give a formula for the number of right cosets of a parabolic subgroup of G left fixed by x, in terms of the corresponding action of w in W. In case G is untwisted, it turns out thta x fixes exactly as many cosets as does W in the corresponding permutation representation.
The conjugacy of Cartan subalgebras of a Lie algebra L over an algebraically closed field under the connected automorphism group G of L is inherited by those G-stable ideals B for which B/Ci is restrictable for some hypercenter Ci of B. Concequently, if L is a restrictable Lie algebra such that L/Ci restrictable for some hypercenter Ci of L, and if the Lie algebra of Aut L contains ad L, then the Cartan subalgebras of L are conjugate under G. (The techniques here apply in particular to Lie algebras of characteristic 0 and classical Lie algebras, showing how the conjugacy of Cartan subgroups of algebraic groups leads quickly in these cases to the conjugacy of Cartan subalgebras.)
For any group S let Ab(S) = {A∣A is an abelian subgroup of S of maximal order}. Let G be a Chevalley group of type An, Bn, Cn, or Dn over a finite field of characteristic p and let. In this paper Ab(U) is determined for all such groups.
Given a group G, we may ask whether it is the commutator subgroup of some group G. For example, every abelian group G is the commutator subgroup of a semi-direct product of G x G by a cyclic group of order 2. On the other hand, no symmetric group Sn(n>2) is the commutator subgroup of any group G. In this paper we examine the classical linear groups over finite fields K of characteristic not equal to 2, and determine which can be commutator subgroups of other groups. In particular, we settle the question for all normal subgroups of the general linear groups GLn(K), the unitary groups Un(K) (n≠4), and the orthogonal groups On(K) (n≧7).
Let ℝ∞ be the direct limit of the Euclidean spaces ℝn. Now the orthogonal group O(∞) acts on ℝn and the direct limit O(∞) of the groups O(∞) acts on ℝ∞. The infinite pin group Pin(∞) is an extension of ℤ2 by O(∞) and admits the following presentation: the generators are the unit vectors xf in ℝ∞ and the relations are