To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The idea that the cohomology of finite groups might be fruitfully approached via the cohomology of ambient semisimple algebraic groups was first shown to be viable in the papers [E. Cline, B. Parshall, and L. Scott, Cohomology of finite groups of Lie type, I, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 169–191] and [E. Cline, B. Parshall, L. Scott and W. van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), 143–163]. The second paper introduced, through a limiting process, the notion of generic cohomology, as an intermediary between finite Chevalley group and algebraic group cohomology. The present paper shows that, for irreducible modules as coefficients, the limits can be eliminated in all but finitely many cases. These exceptional cases depend only on the root system and cohomological degree. In fact, we show that, for sufficiently large $r$, depending only on the root system and $m$, and not on the prime $p$ or the irreducible module $L$, there are isomorphisms ${\mathrm{H} }^{m} (G({p}^{r} ), L)\cong {\mathrm{H} }^{m} (G({p}^{r} ), {L}^{\prime } )\cong { \mathrm{H} }_{\mathrm{gen} }^{m} (G, {L}^{\prime } )\cong {\mathrm{H} }^{m} (G, {L}^{\prime } )$, where the subscript ‘gen’ refers to generic cohomology and ${L}^{\prime } $ is a constructibly determined irreducible ‘shift’ of the (arbitrary) irreducible module $L$ for the finite Chevalley group $G({p}^{r} )$. By a famous theorem of Steinberg, both $L$ and ${L}^{\prime } $ extend to irreducible modules for the ambient algebraic group $G$ with ${p}^{r} $-restricted highest weights. This leads to the notion of a module or weight being ‘shifted $m$-generic’, and thus to the title of this paper. Our approach is based on questions raised by the third author in [D. I. Stewart, The second cohomology of simple${\mathrm{SL} }_{3} $-modules, Comm. Algebra 40 (2012), 4702–4716], which we answer here in the cohomology cases. We obtain many additional results, often with formulations in the more general context of ${ \mathrm{Ext} }_{G({p}^{r} )}^{m} $ with irreducible coefficients.
We deal with aspects of direct and inverse problems in parameterized Picard–Vessiot (PPV) theory. It is known that, for certain fields, a linear differential algebraic group (LDAG) $G$ is a PPV Galois group over these fields if and only if $G$ contains a Kolchin-dense finitely generated group. We show that, for a class of LDAGs $G$, including unipotent groups, $G$ is such a group if and only if it has differential type $0$. We give a procedure to determine if a parameterized linear differential equation has a PPV Galois group in this class and show how one can calculate the PPV Galois group of a parameterized linear differential equation if its Galois group has differential type $0$.
The main result of this paper states that if $k$ is a field of characteristic $p\gt 0$ and $A/ k$ is a central simple algebra of index $d= {p}^{n} $ and exponent ${p}^{e} $, then $A$ is split by a purely inseparable extension of $k$ of the form $k( \sqrt[{p}^{e} ]{{a}_{i} }, i= 1, \ldots , d- 1)$. Combining this result with a theorem of Albert (for which we include a new proof), we get that any such algebra is Brauer equivalent to the tensor product of at most $d- 1$ cyclic algebras of degree ${p}^{e} $. This gives a drastic improvement upon previously known upper bounds.
We study branching multiplicity spaces of complex classical groups in terms of ${\mathrm{GL} }_{2} $ representations. In particular, we show how combinatorics of ${\mathrm{GL} }_{2} $ representations are intertwined to make branching rules under the restriction of ${\mathrm{GL} }_{n} $ to ${\mathrm{GL} }_{n- 2} $. We also discuss analogous results for the symplectic and orthogonal groups.
This is a report on recent work of Chałupnik and Touzé. We explain the Koszul duality for the category of strict polynomial functors and make explicit the underlying monoidal structure which seems to be of independent interest. Then we connect this to Ringel duality for Schur algebras and describe Serre duality for strict polynomial functors.
The well-known fiber dimension theorem in algebraic geometry says that for every morphism f:X→Y of integral schemes of finite type the dimension of every fiber of f is at least dim X−dim Y. This has recently been generalized by Brosnan, Reichstein and Vistoli to certain morphisms of algebraic stacks f:𝒳→𝒴, where the usual dimension is replaced by essential dimension. We will prove a general version for morphisms of categories fibered in groupoids. Moreover, we will prove a variant of this theorem, where essential dimension and canonical dimension are linked. These results let us relate essential dimension to canonical dimension of algebraic groups. In particular, using the recent computation of the essential dimension of algebraic tori by MacDonald, Meyer, Reichstein and the author, we establish a lower bound on the canonical dimension of algebraic tori.
We present a new algorithm for constructing a Chevalley basis for any Chevalley Lie algebra over a finite field. This is a necessary component for some constructive recognition algorithms of exceptional quasisimple groups of Lie type. When applied to a simple Chevalley Lie algebra in characteristic p⩾5, our algorithm has complexity involving the seventh power of the Lie rank, which is likely to be close to best possible.
We study the space of commuting elements in the central product Gm,p of m copies of the special unitary group SU(p), where p is a prime number. In particular, a computation for the number of path-connected components of these spaces is given and the geometry of the moduli space Rep(ℤn, Gm,p) of isomorphism classes of flat connections on principal Gm,p-bundles over the n-torus is completely described for all values of n, m and p.
Let G be a finite d-dimensional classical group and p a prime divisor of ∣G∣ distinct from the characteristic of the natural representation. We consider a subfamily of p-singular elements in G (elements with order divisible by p) that leave invariant a subspace X of the natural G-module of dimension greater than d/2and either act irreducibly on X or preserve a particular decomposition of X into two equal-dimensional irreducible subspaces. We proved in a recent paper that the proportion in G of these so-called p-abundant elements is at least an absolute constant multiple of the best currently known lower bound for the proportion of all p-singular elements. From a computational point of view, the p-abundant elements generalise another class of p-singular elements which underpin recognition algorithms for finite classical groups, and it is our hope that p-abundant elements might lead to improved versions of these algorithms. As a step towards this, here we present efficient algorithms to test whether a given element is p-abundant, both for a known prime p and for the case where p is not known a priori.
In the present paper we introduce and study the twisted γ-filtration on K0(Gs), where Gs is a split simple linear algebraic group over a field k of characteristic prime to the order of the center of Gs. We apply this filtration to construct nontrivial torsion elements in γ-rings of twisted flag varieties.
Let T be an algebraic torus over ℚ such that T(ℝ) is compact. Assuming the generalized Riemann hypothesis, we give a lower bound for the size of the class group of T modulo its n-torsion in terms of a small power of the discriminant of the splitting field of T. As a corollary, we obtain an upper bound on the n-torsion in that class group. This generalizes known results on the structure of class groups of complex multiplication fields.
We compare the cohomology of (parabolic) Hitchin fibers for Langlands dual groups G and G∨. The comparison theorem fits in the framework of the global Springer theory developed by the author. We prove that the stable parts of the parabolic Hitchin complexes for Langlands dual group are naturally isomorphic after passing to the associated graded of the perverse filtration. Moreover, this isomorphism intertwines the global Springer action on one hand and Chern class action on the other. Our result is inspired by the mirror symmetric viewpoint of geometric Langlands duality. Compared to the pioneer work in this subject by T. Hausel and M. Thaddeus, R. Donagi and T. Pantev, and N. Hitchin, our result is valid for more general singular fibers. The proof relies on a variant of Ngô’s support theorem, which is a key point in the proof of the Fundamental Lemma.
This paper studies two new kinds of affine Springer fibres that are adapted to the root valuation strata of Goresky–Kottwitz–MacPherson. In addition it develops various linear versions of Katz's Hodge–Newton decomposition.
The support varieties for the induced modules or Weyl modules for a reductive algebraic group G were computed over the first Frobenius kernel G1 by Nakano, Parshall and Vella. A natural generalization of this computation is the calculation of the support varieties of Demazure modules over the first Frobenius kernel, B1, of the Borel subgroup B. In this paper we initiate the study of such computations. We complete the entire picture for reductive groups with underlying root systems A1 and A2. Moreover, we give complete answers for Demazure modules corresponding to a particular (standard) element in the Weyl group, and provide results relating support varieties between different Demazure modules which depend on the Bruhat order.
We prove the finiteness of class numbers and Tate–Shafarevich sets for all affine group schemes of finite type over global function fields, as well as the finiteness of Tamagawa numbers and Godement’s compactness criterion (and a local analogue) for all such groups that are smooth and connected. This builds on the known cases of solvable and semi-simple groups via systematic use of the recently developed structure theory and classification of pseudo-reductive groups.
For the locally symmetric space X attached to an arithmetic subgroup of an algebraic group G of ℚ-rank r, we construct a compact manifold by gluing together 2r copies of the Borel–Serre compactification of X. We apply the classical Lefschetz fixed point formula to and get formulas for the traces of Hecke operators ℋ acting on the cohomology of X. We allow twistings of ℋ by outer automorphisms η of G. We stabilize this topological trace formula and compare it with the corresponding formula for an endoscopic group of the pair (G,η) . As an application, we deduce a weak lifting theorem for the lifting of automorphic representations from Siegel modular groups to general linear groups.
We calculate all decomposition matrices of the cyclotomic Hecke algebras of the rank two exceptional complex reflection groups in characteristic zero. We prove the existence of canonical basic sets in the sense of Geck–Rouquier and show that all modular irreducible representations can be lifted to the ordinary ones.
In this work, we study the intersection cohomology of Siegel modular varieties. The goal is to express the trace of a Hecke operator composed with a power of the Frobenius endomorphism (at a good place) on this cohomology in terms of the geometric side of Arthur’s invariant trace formula for well-chosen test functions. Our main tools are the results of Kottwitz about the contribution of the cohomology with compact support and about the stabilization of the trace formula, Arthur’s L2 trace formula and the fixed point formula of Morel [Complexes pondérés sur les compactifications de Baily–Borel. Le cas des variétés de Siegel, J. Amer. Math. Soc. 21 (2008), 23–61]. We ‘stabilize’ this last formula, i.e. express it as a sum of stable distributions on the general symplectic groups and its endoscopic groups, and obtain the formula conjectured by Kottwitz in [Shimura varieties and λ-adic representations, in Automorphic forms, Shimura varieties and L-functions, Part I, Perspectives in Mathematics, vol. 10 (Academic Press, San Diego, CA, 1990), 161–209]. Applications of the results of this article have already been given by Kottwitz, assuming Arthur’s conjectures. Here, we give weaker unconditional applications in the cases of the groups GSp4 and GSp6.
We fix a prime p and consider a connected reductive algebraic group G over a perfect field k which is defined over 𝔽p. Let M be a finite-dimensional rational G-module M, a comodule for k[G]. We seek to somewhat unravel the relationship between the restriction of M to the finite Chevalley subgroup G(𝔽p)⊂G and the family of restrictions of M to Frobenius kernels G(r) ⊂G. In particular, we confront the conundrum that if M is the Frobenius twist of a rational G-module N,M=N(1), then the restrictions of M and N to G(𝔽p)are equal whereas the restriction of M to G(1) is trivial. Our analysis enables us to compare support varieties (and the finer non-maximal support varieties) for G(𝔽p)and G(r) of a rational G-module M where the choice of r depends explicitly on M.
We investigate the tempered representations derived from the principal series of SLℓ(F) and their geometric structure. In particular, we give the parameterization for special representations and prove the tempered part of the Aubert–Baum–Plymen conjecture for the toral cases of SLℓ(F).