To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If G is a π-separable group and χ is an irreducible character of G, then Issacs gas defined an associated pair (W, γ), called a nucleus of χ. The nucleus is the last term in a certain chain of pairs (I, Ω), where I is a subgroup of G and Ω is an irreducible character of I. The length of this chain is an invariant of χ that we call the nuclear length. In this paper we study bounds on the nuclear length of χ as a function of the π-length of G and as a function of the character degree χ(1).
Given an infinite family of finite primitive groups, conditions are found which ensure that almost all the orbitals are not self-paired. If p is a prime number congruent to ±1(mod 10), these conditions apply to the groups P S L (2, p) acting on the cosets of a subgroup isomorphic to A5. In this way, infinitely many vertex-primitive ½-transitive graphs which are not metacirculants are obtained.
Regular maps of type {p, q}r and the associated groups Gp,q,r are considered for small values for p, q and r. In particular, it is shown that the groups G4,6,6 and G5,5,6 are Abelian-by-infinite, and there are infinitely many regular maps of each of the types {4, 6}6, {5, 5}6, {5, 6}6 and {6, 6}6.
There is a deeper structure to the ordinary character theory of finite solvable groups than might at first be apparent. Mauch of this structure, which has no analog for general finite gruops, becomes visible onyl when the character of solvable groups are viewes from the persepective of a particular set π of prime numbers. This purely expository paper discusses the foundations of this πtheory and a few of its applications. Included are the definitions and essential properties of Gajendragadkar's π-special characters and their connections with the irreducible πpartial characters and their associated Fong characters. Included among the consequences of the theory discussed here are applications to questions about the field generated by the values of a character, about extensions of characters of subgroups and about M-groups.
We develop techniques to compute the homology of Quillen's complex of elementary abelian p-subgroups of a finite group in the case where the group has a normal subgroup of order divisible by p. The main result is a long exact sequence relating the homologies of these complexes for the whole group, the normal subgroup, and certain centralizer subgroups. The proof takes place at the level of partially-ordered sets. Notions of suspension and wedge product are considered in this context, which are analogous to the corresponding notions for topological spaces. We conclude with a formula for the generalized Steinberg module of a group with a normal subgroup, and give some examples.
A practical method is described for deciding whether or not a finite-dimensional module for a group over a finite field is reducible or not. In the reducible case, an explicit submodule is found. The method is a generalistaion of the Parker-Norton ‘Meataxe’ algorithm, but it does not depend for its efficiency on the field being small. The principal tools involved are the calculation of the nullspace and the characteristic polynomial of a matrix over a finite field, and the factorisation of the latter. Related algorithms to determine absolute irreducibility and module isomorphism for irreducibles are also described. Details of an implementation in the GAP system, together with some performance analyses are included.
Let X be an infinite set and T(X) be the full transformation semigroup on X. In [4] and [6] Howie gives a description of the subsemigroup of T(X) generated by its idempotents. In order to do this he defines, for α in T(X),
and refers to the cardinals s(α) = |S(α)|, d(α) = |Z(α)| and |c(α) = |C(α)| as the shift, the defect, and the collapse of α respectively. Then putting
he proves that the subsemigroup of T(X) generated by its idempotents is . Furthermore, both F and Q are generated by their idempotents
Any representation of a group G on a vector space V extends uniquely to a representation of G on the free metabelian Lie algebra on V. In this paper we study such representations and make some group-theoretic applications.
The free product *CRSi of an arbitrary family of disjoint completely simple semigroups {Si}i∈i, within the variety CR of completely regular semigroups, is described by means of a theorem generalizing that of Kaďourek and Polák for free completely regular semigroups. A notable consequence of the description is that all maximal subgroups of *CRSi are free, except for those in the factors Si themselves. The general theorem simplifies in the case of free CR-products of groups and, in particular, free idempotent-generated completely regular semigroups.
The operators K, k, T and t are defined on the lattice of congruences on a Rees matrix semigroup S as follows. For ρ ∈ (S), ρK and ρk (ρT and ρt) are the greatest and the least congruences with the same kernel (trace) as ρ, respectively. We determine the semigroup generated by the operators K, k, T and t as they act on all completely simple semigroups. We also determine the network of congruences associated with a congruence ρ ∈ (S) and the lattice generated by it. The latter is then represented by generators and relations.
The Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is not a Cayley graph. We consider the problem of determining the orders of such graphs. In this, the first of a series of papers, we present a sequence of constructions which solve the problem for many orders. In particular, such graphs exist for all orders divisible by a fourth power, and all even orders which are divisible by a square.
We provide a number of explicit examples of small volume hyperbolic 3-manifolds and 3-orbifolds with various geometric properties. These include a sequence of orbifolds with torsion of order q interpolating between the smallest volume cusped orbifold (q = 6) and the smallest volume limit orbifold (q → ∞), hyperbolic 3-manifolds with automorphism groups with large orders in relation to volume and in arithmetic progression, and the smallest volume hyperbolic manifolds with totally geodesic surfaces. In each case we provide a presentation for the associated Kleinian group and exhibit a fundamental domain and an integral formula for the co-volume. We discuss other interesting properties of these groups.
Examples of Fitting classes generated by certain periodic infinite groups are presented in this paper. The groups in question are finite extensions of direct products of quasi-cyclic (Prüfer) groups and are, in particular, Černikov groups. The methods applied follow closely those used for constructing Fitting classes of finite groups, especially in the case of nilpotent length three.
We establish a one-to-one “group-like” correspondence between congruences on a free monoid X* and so-called positively self-conjugate inverse submonoids of the polycyclic monoid P(X). This enables us to translate many concepts in semigroup theory into the language of inverse semigroups.
This note investigates torsion-free abelian groups G of finite rank which embed, as subgroups of finite index, in a finite direct sum C of subgroups of the additive group of rational numbers. Specifically, we examine the relationship between G and C when the index of G in C is minimal. Some properties of Warfield duality are developed and used (in the case that G is locally free) to relate our results to earlier ones by Burkhardt and Lady.
We conjecture that five well-known identities universally satisfied by commutators in a group generate all such universal commutator identies. We use homological techniques to partially prove the conjecture.
Let k be an infinite cardinal, F a field, and let GL(k, F) be the group of all non-singular linear transformations on a ki-dimensional vector space V over F. Various examples are given of maximal subgroups of GL(k, F). These include (i) stabilizers of families of subspaces of V which are like filters or ideals on a set, (ii) almost stabilizers of certain subspaces of V, (iii) almost stabilizers of a direct decomposition of V into two k-dimensional subspaces.
It is also noted that GL(k, F) is not the union of any chain of length k of proper subgroups.
In this paper we consider the groups G = G(α, n) defined by the presentations . We derive a formula for [G′: ″] and determine the order of G whenever n ≦ 7. We show that G is a finite soluble group if n is odd, but that G can be infinite when n is even, n ≧ 8. We also show that G(6, 10) is a finite insoluble group involving PSU(3, 4), and that the group H with presentation is a finite group of deficiency zero of order at least 114,967,210,176,000.