We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Finite ρ-groups with all of their maximal subgroups isomorphic are studied by means of the coclass. All such groups of coclass I and 2 are determined, while those of coclass 3 are shown to have order at most ρ13. A general bound for the order is given as a function of ρ and the coclass only.
A subgroup H of an abelian p–group G is pure in G if the inclusion map of H into G is an isometry with respect to the (pseudo-) metrics on H and G associated with their p–adic topologies. In this paper, those subgroups (called here imbedded subgroups) of abelian groups for which the inclusion is a homeomorphism with respect to the p–adic topologies are studied, the aim being to compare the concepts of imbeddedness and purity. Perhaps the main results indicate that imbedded subgroups are considerably more abundant than pure subgroups. Groups for which this is not the case are characterized.
We give presentations for the groups PSL(2, pn), p prime, which show that the deficiency of these groups is bounded below. In particular, for p = 2 where SL(2, 2n) = PSL(2, 2n), we show that these groups have deficiency greater than or equal to – 2. We give deficiency – 1 presentations for direct products of SL(2, 2n) for coprime ni. Certain new efficient presentations are given for certain cases of the groups considered.
We study the characteristic p analogue of M-groups, the so-called Mp-group Generalizing this notion, we also consider the condition that the modular irreducible representations are induced from representations of dimension < p, or even weaker, of dimension not divisible by p.
The n–th member of the growth sequence of a globally idempotent finite semigroup without identity element is at least 2n. (This had been conjectured by J. Wiegold.)
In this paper we investigate the structure of a collineation group G of a finite projective plane Π of odd order, assuming that G leaves invariant an oval Ω of Π. We show that if G is nonabelian simple, then G ≅ PSL(2, q) for q odd. Several results about the structre and the action of G are also obtained under the assumptions that n ≡ 1 (4) and G is transitive on the points of Ω.
A semigroup S is called E-inversive if for every a ∈ S ther is an x ∈ S such that (ax)2 = ax. A construction of all E-inversive subdirect products of two E-inversive semigroups is given using the concept of subhomomorphism introduced by McAlister and Reilly for inverse semigroups. As an application, E-unitary covers for an E-inversive semigroup are found, in particular for those whose maximum group homomorphic image is a given group. For this purpose, the explicit form of the least group congruence on an arbitrary E-inversive semigroup is given. The special case of full subdirect products of a semilattice and a group (that is, containing all indempotents of the direct product) is investigated and, following an idea of Petrich, a construction of all these semigroups is provided. Finally, all periodic semigroups which are subdirect products of a semilattice or a band with a group are characterized.
It is shown that a so-called shortly connected combinatorial inverse semigroup is strongly lattice-determined “modulo semilattices”. One of the consequences of this theorem is the known fact that a simple inverse semigroup with modular lattice of full inverse subsemigroups is strongly lattice-determined [7]. The partial automorphism semigroup of an inverse semigroup S consists of all isomorphisms between inverse subsemigroups of S. It is proved that if S is a shortly connected combinatorial inverse semigroup, T an inverse semigroup and the partial automorphism semigroups of S and T are isomorphic, then either S and T are isomorphic or they are dually isomorphic chains (with respect to the natural partial order); moreover, any isomorphism between the partial automorphism semigroups of S and T is induced either by an isomorphism or, if S and T are dually isomorphic chains, by a dual isomorphism between S and T. Counter-examples are constructed to demonstrate that the assumptions about S being shortly connected and combinatorial are essential.
A presentation is given for the cohomology ring of a finitely presented combinatorially aspherical group with trivial coefficients in an integral domain. Cohomological periodicity is characterized in terms of the cup product.
A Neumann subgroup of the classical modular group is by definition a complement of a maximal parabolic subgroup. Recently Neumann subgroups have been studied in a series of papers by Brenner and Lyndon. There is a natural extension of the notion of a Neumann subgroup in the context of any finitely generated Fuchsian group Γ acting on the hyperbolic plane H such that Γ/H is homeomorphic to an open disk. Using a new geometric method we extend the work of Brenner and Lyndon in this more general context.
A group G is said to be conjugacy p-separable if two non-conjugate elements of G remain non-conjugate in some finite p-group endomorphic image of G. We show that the non-cyclic free centre-by-metabelian groups are not conjugacy p-separable for any prime p. On the other hand, we show that every free centre-by-metabelian group has the solvable conjugacy problem
It has been shown by one of the authors that the system of idempotents of monoids on a group G of Lie type with Dynkin diagram Γ can be classified by the following data: a partially ordered set U with maximum element 1 and a map λ: U → 2Γ with λ(1) = Γ and with the property that for all J1, J2, J3 ∈ U with J1 > J2 > J3, any connected component of λ(J2) is contained in either λ(J1) or λ(J3). In this paper we show that λ comes from a regular monoid if and only if the following conditions are satisfied: (1) U is a ∧-semilattice; (2) If J1, J2 ∈ U, then λ(J1)∧ λ(J2) λ(J1 ∧ J2); (3) If θ ∈ Γ, J ∈ U, then max{J1 ∈ U|J1 > J, θ ∈ λ (J1)} exists; (4) If J1, J2 ∈ U with J1 > J2 and if X is a two element discrete subset of λ(J1) ∪ λ(J2), then X λ(J) for some J ∈ UJ with J1 > J > J2.
In this paper, it is shown that any connected, small category can be embedded in a semi-groupoid (a category in which there is at least one isomorphism between any two elements) in such a way that the embedding includes a homotopy equivalence of classifying spaces. This immediately gives a monoid whose classifying space is of the same homotopy type as that of the small category. This construction is essentially algorithmic, and furthermore, yields a finitely presented monoid whenever the small category is finitely presented. Some of these results are generalizations of ideas of McDuff.
All subnormal subgroups of hypernormalizing groups have by definition subnormal normalizers. It is shown that finite soluble HN-groups belong to the class of groups of Fitting length three. Finite HN-groups are considered including those with subnormal quotient isomorphic to SL(2,5).
In this note, for any given simple group obtained from an orthogonal or unitary group of non-zero index, by a procedure similar to the construction of Chevalley groups and twisted groups, we construct a simple group which is identified with the given simple classical group. The simple groups constructed in this note can be interpreted as generalized simple groups of Lie type. Thus all simple groups of Lie type of types An, Bn, Cn and Dn and all generalized simple groups of Lie type constructed in this note exhaust all simple classical groups with non-zero indices.
A construction for Fitting formations given by the author and C. L. Kanes is generalised. The original examples were based on the use of Fitting families of modules over algebraically closed fields. An example of Haberl and Heineken in 1984 suggested that the methods should work with modules over arbitrary fields. We show that this is indeed the case, provided we restrictthe class of groups considered.
In this paper we continue our investigations of a construction method for subnear-rings of M(G) proposed by H. Wielandt. For a meromorphic product H, H ⊂ Gk, G finite, we obtain necessary and sufficient conditions for M(G, k, H) to be a near-field.
In this note we present a general Jordan-Hölder type theorem for modular lattices and apply it to obtain various (old and new) versions of the Jordan-Hölder Theorem for finite groups.
We determine the structure of a nonabelian group G of odd order such that some automorphism of G sends exactly (1/p)|G| elements to their cubes, where p is the smallest prime dividing |G|. These groups are close to being abelian in the sense that they either have nilpotency class 2 or have an abelian subgroup of index p.