We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop techniques to compute the homology of Quillen's complex of elementary abelian p-subgroups of a finite group in the case where the group has a normal subgroup of order divisible by p. The main result is a long exact sequence relating the homologies of these complexes for the whole group, the normal subgroup, and certain centralizer subgroups. The proof takes place at the level of partially-ordered sets. Notions of suspension and wedge product are considered in this context, which are analogous to the corresponding notions for topological spaces. We conclude with a formula for the generalized Steinberg module of a group with a normal subgroup, and give some examples.
A practical method is described for deciding whether or not a finite-dimensional module for a group over a finite field is reducible or not. In the reducible case, an explicit submodule is found. The method is a generalistaion of the Parker-Norton ‘Meataxe’ algorithm, but it does not depend for its efficiency on the field being small. The principal tools involved are the calculation of the nullspace and the characteristic polynomial of a matrix over a finite field, and the factorisation of the latter. Related algorithms to determine absolute irreducibility and module isomorphism for irreducibles are also described. Details of an implementation in the GAP system, together with some performance analyses are included.
Let X be an infinite set and T(X) be the full transformation semigroup on X. In [4] and [6] Howie gives a description of the subsemigroup of T(X) generated by its idempotents. In order to do this he defines, for α in T(X),
and refers to the cardinals s(α) = |S(α)|, d(α) = |Z(α)| and |c(α) = |C(α)| as the shift, the defect, and the collapse of α respectively. Then putting
he proves that the subsemigroup of T(X) generated by its idempotents is . Furthermore, both F and Q are generated by their idempotents
Any representation of a group G on a vector space V extends uniquely to a representation of G on the free metabelian Lie algebra on V. In this paper we study such representations and make some group-theoretic applications.
The free product *CRSi of an arbitrary family of disjoint completely simple semigroups {Si}i∈i, within the variety CR of completely regular semigroups, is described by means of a theorem generalizing that of Kaďourek and Polák for free completely regular semigroups. A notable consequence of the description is that all maximal subgroups of *CRSi are free, except for those in the factors Si themselves. The general theorem simplifies in the case of free CR-products of groups and, in particular, free idempotent-generated completely regular semigroups.
The operators K, k, T and t are defined on the lattice of congruences on a Rees matrix semigroup S as follows. For ρ ∈ (S), ρK and ρk (ρT and ρt) are the greatest and the least congruences with the same kernel (trace) as ρ, respectively. We determine the semigroup generated by the operators K, k, T and t as they act on all completely simple semigroups. We also determine the network of congruences associated with a congruence ρ ∈ (S) and the lattice generated by it. The latter is then represented by generators and relations.
The Petersen graph on 10 vertices is the smallest example of a vertex-transitive graph which is not a Cayley graph. We consider the problem of determining the orders of such graphs. In this, the first of a series of papers, we present a sequence of constructions which solve the problem for many orders. In particular, such graphs exist for all orders divisible by a fourth power, and all even orders which are divisible by a square.
We provide a number of explicit examples of small volume hyperbolic 3-manifolds and 3-orbifolds with various geometric properties. These include a sequence of orbifolds with torsion of order q interpolating between the smallest volume cusped orbifold (q = 6) and the smallest volume limit orbifold (q → ∞), hyperbolic 3-manifolds with automorphism groups with large orders in relation to volume and in arithmetic progression, and the smallest volume hyperbolic manifolds with totally geodesic surfaces. In each case we provide a presentation for the associated Kleinian group and exhibit a fundamental domain and an integral formula for the co-volume. We discuss other interesting properties of these groups.
Examples of Fitting classes generated by certain periodic infinite groups are presented in this paper. The groups in question are finite extensions of direct products of quasi-cyclic (Prüfer) groups and are, in particular, Černikov groups. The methods applied follow closely those used for constructing Fitting classes of finite groups, especially in the case of nilpotent length three.
We establish a one-to-one “group-like” correspondence between congruences on a free monoid X* and so-called positively self-conjugate inverse submonoids of the polycyclic monoid P(X). This enables us to translate many concepts in semigroup theory into the language of inverse semigroups.
This note investigates torsion-free abelian groups G of finite rank which embed, as subgroups of finite index, in a finite direct sum C of subgroups of the additive group of rational numbers. Specifically, we examine the relationship between G and C when the index of G in C is minimal. Some properties of Warfield duality are developed and used (in the case that G is locally free) to relate our results to earlier ones by Burkhardt and Lady.
We conjecture that five well-known identities universally satisfied by commutators in a group generate all such universal commutator identies. We use homological techniques to partially prove the conjecture.
Let k be an infinite cardinal, F a field, and let GL(k, F) be the group of all non-singular linear transformations on a ki-dimensional vector space V over F. Various examples are given of maximal subgroups of GL(k, F). These include (i) stabilizers of families of subspaces of V which are like filters or ideals on a set, (ii) almost stabilizers of certain subspaces of V, (iii) almost stabilizers of a direct decomposition of V into two k-dimensional subspaces.
It is also noted that GL(k, F) is not the union of any chain of length k of proper subgroups.
In this paper we consider the groups G = G(α, n) defined by the presentations . We derive a formula for [G′: ″] and determine the order of G whenever n ≦ 7. We show that G is a finite soluble group if n is odd, but that G can be infinite when n is even, n ≧ 8. We also show that G(6, 10) is a finite insoluble group involving PSU(3, 4), and that the group H with presentation is a finite group of deficiency zero of order at least 114,967,210,176,000.
The set C(G) of conjugacy classes of subgroups of a group G has a natural partial order. We study p-groups G for which C(G) has antichains of prescribed lengths.
We study the residual finiteness of free products with amalgamations and HNN-extensions of finitely generated nilpotent groups. We give a characterization in terms of certain conditions satisfied by the associated subgroups. In particular the residual finiteness of these groups implies the possibility of extending the isomorphism of the associated subgroups to an isomorphism of their isolated closures in suitable overgroups of the factors (or the base group in case of HNN-extensions).
We answer some questions which arise from a recent paper of Campbell, Heggie, Robertson and Thomas on one-relator free products of two cyclic groups. In the process we show how publicly accessible computer programs can be used to help answer questions about finite group presentations.
This paper is concerned with a new notion of coherency for monoids. A monoid S is right coherent if the first order theory of right S-sets is coherent; this is equivalent to the property that every finitely generated S-subset of every finitely presented right S-set is finitely presented. If every finitely generated right ideal of S is finitely presented we say that S is weakly right coherent. As for the corresponding situation for modules over a ring, we show that our notion of coherency is related to products of flat left S-sets, although there are some marked differences in behaviour from the case for rings. Further, we relate our work to ultraproducts of flat left S-sets and so to the question of axiomatisability of certain classes of left S-sets.
We show that a monoid S is weakly right coherent if and only if the right annihilator congruence of every element is finitely generated and the intersection of any two finitely generated right ideals is finitely generated. A similar result describes right coherent monoids. We use these descriptions to recognise several classes of (weakly) right coherent monoids. In particular we show that any free monoid is weakly right (and left) coherent and any free commutative monoid is right (and left) coherent.
In this paper we study groups with Černikov conjugacy classes which are nilpotent-by-Černikov groups, giving full characterizations of them and applying the results obtained to some related areas.