We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a previous paper the authors described an algorithm to determine whether a group of matrices over a finite field, generated by a given set of matrices, contains one of the classical groups or the special linear group. The algorithm was designed to work for all sufficiently large field sizes and dimensions of the matrix group. However, it did not apply to certain small cases. Here we present an algorithm to handle the remaining cases. The theoretical background of the algorithm presented in this paper is a substantial extension of that needed for the original algorithm.
In previous work [2] calculations of subquadratic second order Dehn functions for various groups were carried out. In this paper we obtain estimates for upper and lower bounds of second order Dehn functions of HNN-extensions, and use these to exhibit an infinite number of different superquadratic second order Dehn functions. At the end of the paper several open questions concerning second order Dehn functions of groups are discussed.
We survey the current state of knowledge of bounds in the restricted Burnside problem. We make two conjectures which are related to the theory of PI-algebras.
We obtain analogues, in the setting of semigroups with zero, of McAlister's convering theoren and the structure theorems of McAlister, O'Carroll, and Margolis and Pin. The covers come from a class C of semigroups defined by modifying one of the many characterisations of E-unitary inverse semigroups, namely, that an inverse semigroups is E-unitary if and only if it is an inverse image of an idempotent-pure homomorphism onto a group. The class C is properly contained in the class of all E*-unitary inverse semigroups introduced by Szendrei but properly contains the class of strongly categorical E*-unitary semigroups recently considered by Gomes and Howie.
A universal algebra is called congruence compact if every family of congruence classes with the finite intersection property has a non-empty intersection. This paper determines the structure of all right congruence compact monoids S for which Green's relations ℐ and ℋ coincide. The results are thus sufficiently general to describe, in particular, all congruence compact commutative monoids and all right congruence compact Clifford inverse monoids.
It is shown that every element of the complex contracted semigroup algebra of an inverse semigroup S = S0 has a Moore-Penrose inverse, with respect to the natural involution, if and only if S is locally finite. In particular, every element of a complex group algebra has such an inverse if and only if the group is locally finite.
Suppose that G is a π-separable group. Let N be a normal π1-subgroup of G and let H be a Hall π-subgroup of G. In this paper, we prove that there is a canonical basis of the complex space of the class functions of G which vanish of G-conjugates ofHN. When N = 1 and π is the complement of a prime p, these bases are the projective indecomposable characters and set of irreduciblt Brauer charcters of G.
There is a substantial theory (modelled on permutation representations of groups) of representations of an inverse semigroup S in a symmetric inverse monoid Ix, that is, a monoid of partial one-to-one selfmaps of a set X. The present paper describes the structure of a categorical dual Ix* to the symmetric inverse monoid and discusses representations of an inverse semigroup in this dual symmetric inverse monoid. It is shown how a representation of S by (full) selfmaps of a set X leads to dual pairs of representations in Ix and Ix*, and how a number of known representations arise as one or the other of these pairs. Conditions on S are described which ensure that representations of S preserve such infima or suprema as exist in the natural order of S. The categorical treatment allows the construction, from standard functors, of representations of S in certain other inverse algebras (that is, inverse monoids in which all finite infima exist). The paper concludes by distinguishing two subclasses of inverse algebras on the basis of their embedding properties.
In this paper we study groups in which every subgroup is subnormal of defect at most 3. Let G be a group which is either torsion-free or of prime exponent different from 7. We show that every subgroup in G is subnormal of defect at most 3 if and only if G is nilpotent of class at most 3. When G is of exponent 7 the situation is different. While every group of exponent 7, in which every subgroup is subnormal of defect at most 3, is nilpotent of class at most 4, there are examples of such groups with class exactly 4. We also investigate the structure of these groups.
This paper has a twofold purpose. The first is to compute the Euler characteristics of hyperbolic Coxeter groups Ws of level 1 or 2 by a mixture of theoretical and computer aided methods. For groups of level 1 and odd values of |S|, the Euler characteristic is related to the volume of the fundamental region of Ws in hyperbolic space. Secondly we note two methods of imbedding such groups in each other. This reduces the amount of computation needed to determine the Euler characteristics and also reduces the number of essentially different hyperbolic groups that need to be considered.
We outline the classification, up to isometry, of all tetrahedra in hyperbolic space with one or more vertices truncated, for which the dihedral angles along the edges formed by the truncations are all π/2, and those remaining are all submultiples of π. We show how to find the volumes of these polyhedra, and find presentations and small generating sets for the orientation-preserving subgroups of their reflection groups.
For particular families of these groups, we find low index torsion free subgroups, and construct associated manifolds and manifolds with boundary. In particular, for each g ≥ 2, we find a sequence of hyperbolic manifolds with totally geodesic boundary of genus g, which we conjecture to be of least volume among such manifolds.
A structure theorem is proved for finite groups with the property that, for some integer m with m ≥ 2, every proper quotient group can be generated by m elements but the group itself cannot.
In this paper a large family of dominant Fitting classes of finite soluble groups and the description of the corresponding injectors are obtained. Classical constructions of nilpotent and Lockett injectors as well as p-nilpotent injectors arise as particular cases.
This paper is concerned with the question of whether n-Engel groups are locally nilpotent. Although this seems unlikely in general, it is shown here that it is the case for the groups in a large class C including all residually soluble and residually finite groups (in fact all groups considered in traditional textbooks on group theory). This follows from the main result that there exist integers c(n), e(n) depending only on n, such that every finitely generated n-Engel group in the class C is both finite-of-exponent-e(n)–by–nilpotent-of-class≤c(n) and nilpotent-of-class≤c(n)–by–finite-of-exponent-e(n). Crucial in the proof is the fact that a finitely generated Engel group has finitely generated commutator subgroup.
A long time ago Ju. E. Vapne ([2], [3]) and, independently, the author ([4], [5]) classified those standard and complete wreath products that have faithful representations of finite degree over (commutative) fields. See [6] pages 37 40 & 150–154 for an account of this. Recently, in connection with finitary linear groups, I needed a more general wreath product. Somewhat to my surprise neither the classification nor the proof for these generalized wreath products was a straightforward translation from the standard case. The situation is intrinsically more complex and it seems worthwhile recording it separately.
Given a p-subgroup P of a finite group G we express the number of p-blocks of G with defect group P as the p-rank of a symmetric integer matrix indexed by the N(P)/P-conjugacy classes in PC(P)/P. We obtain a combinatorial criterion for P to be a defect group in G.
By a fundamental theorem of Brauer every irreducible character of a finite group G can be written in the field Q(εm) of mth roots of unity where m is the exponent of G. Is it always possible to find a matrix representation over its ring Z[εm] of integers? In the present paper it is shown that this holds true provided it is valid for the quasisimple groups. The reduction to such groups relies on a useful extension theorem for integral representations. Iwasawa theory on class groups of cyclotomic fields gives evidence that the answer is at least affirmative when the exponent is replaced by the order, and provides for a general qualitative result.