We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the group F discovered by Richard Thompson in 1965 has a subexponential upper bound for its Dehn function. This disproves a conjecture by Gersten. We also prove that F has a regular terminating confluent presentation.
Let G be a unitary group of rank one over a non-archimedean local field K (whose residue field has a characteristic ≠ 2). We consider the action of G on the projective plane. A G(K) equivariant map from the set of points in the projective plane that are semistable for every maximal K split torus in G to the set of convex subsets of the building of G(K) is constructed. This map gives rise to an equivariant map from the set of points that are stable for every maximal K split torus to the building. Using these maps one describes a G(K) invariant pure affinoid covering of the set of stable points. The reduction of the affinoid covering is given.
We solve the following problem which was posed by Barnes in 1962. For which abelian groups G and H of the same prime power order is it possible to embed the subgroup lattice of G in that of H? It follows from Barnes' results and a theorem of Herrmann and Huhn that if there exists such an embedding and G contains three independent elements of order p2, then G and H are isomorphic. This reduces the problem to the case that G is the direct product of cyclic p-groups only two of which have order larger than p. We determine all groups H for which the desired embedding exists.
The study of classes of finite groups is divided into two parts. The projective theory studies formations and Schunck classes. The dual injective theory studies Fitting classes. In each type of class a generalisation of Sylow's theorem holds. In this paper we seek further generalisations of Sylow's theorem which hold for classes which are neither injective nor projective, but obey other related properties. Firstly a common framework for the injective and projective theories is constructed. Within the context of this common framework further types of Sylow theorem can then be sought. An example is given of a property which is a simple hybrid of injectivity and projectivity which we will call ‘interjectivity’. A generalised Sylow theorem is then proved in the interjective case.
We investigate the invariant subspace structure of subalgebras of groupoid C*-algebras that are determined by automorphism groups implemented by cocycles on the groupoids. The invariant subspace structure is intimately tied to the asymptotic behavior of the cocycle.
In [3] the authors introduced the notion of a completely 0-simple semigroup of quotients. This definition has since been extended to the class of all semigroups giving a definition of semigroups of quotients which may be regarded as an analogue of the classical ring of quotients. When Q is a semigroup of quotients of a semigroup S, we also say that S is an order in Q.
If G is a finite solvable group, we show that Isaacs' theory on partial characters on Hall π-subgroups can be developed for the nilpotent injectors of G. Therefore, the irreducible characters of G are partitioned into blocks associated to some nilpotent subgroups of G.
We show that p-groups of order p5 are determined by their group algebras over the field of p elements. Many cases have been dealt with in earlier work of ourselves and others. The only case whose details remain to be given here is that of groups of nilpotency class 3 for p odd.
In this paper a scheme of an ‘economical’ embedding of an arbitrary set of groups without involutions in an infinite group with a proper simple normal subgroup is presented. This scheme is then applied to construction of groups with new properties.
In a paper published in this journal [1], J. T. Buckely, J. C. Lennox, B. H. Neumann and the authors considered the class of CF-groups, that G such that |H: CoreG (H)| is finite for all subgroups H. It is shown that locally finite CF-groups are abelian-by-finite and BCF, that is, there is an integer n such that |H: CoreG(H)| ≤ n for all subgroups H. The present paper studies these properties in the class of locally graded groups, the main result being that locally graded BCF-groups are abelian-by-finite. Whether locally graded CF-groups are BFC remains an open question. In this direction, the following problems is posed. Does there exist a finitely generated infinite periodic residually finite group in which all subgroups are finite or of finite index? Such groups are locally graded and CF but not BCF.
A group variety defined by one semigroup law in two variables is constructed and it is proved that its free group is not a periodic extension of a locally soluble group.
We show that the growth function of a finitely generated linear semigroup S ⊆ Mn(K) is controlled by its behaviour on finitely many cancellative subsemigroups of S. If the growth of S is polynomially bounded, then every cancellative subsemigroup T of S has a group of fractions G ⊆ Mn (K) which is nilpotent-by-finite and of finite rank. We prove that the latter condition, strengthened by the hypothesis that every such G has a finite unipotent radical, is sufficient for S to have a polynomial growth. Moreover, the degree of growth of S is then bounded by a polynomial f(n, r) in n and the maximal degree r of growth of finitely generated cancellative T ⊆ S.
We study commutators in pseudo-orthogonal groups O2nR (including unitary, symplectic, and ordinary orthogonal groups) and in the conformal pseudo-orthogonal groups GO2nR. We estimate the number of commutators, c(O2nR) and c(GO2nR), needed to represent every element in the commutator subgroup. We show that c(O2nR) ≤ 4 if R satisfies the ∧-stable condition and either n ≥ 3 or n = 2 and 1 is the sum of two units in R, and that c(GO2nR) ≤ 3 when the involution is trivial and ∧ = R∈. We also show that c(O2nR) ≤ 3 and c(GO2nR) ≤ 2 for the ordinary orthogonal group O2nR over a commutative ring R of absolute stable rank 1 where either n ≥ 3 or n = 2 and 1 is the sum of two units in R.
A group G has all of its subgroups normal-by-finite if H / coreG(H) is finite for all subgroups H of G. These groups can be quite complicated in general, as is seen from the so-called Tarski groups. However, the locally finite groups of this type are shown to be abelian-by-finite; and they are then boundedly core-finite, that is to say, there is a bound depending on G only for the indices | H: coreG(H)|.
That the monoid of all transformations of any set and the monoid of all endomorphisms of any vector space over a division ring are regular (in the sense of von Neumann) has been known for many years (see [6] and [16], respectively). A common generalization of these results to the endomorphism monoid of an independence algebra can be found in [13]. It also follows from [13] that the endomorphism monoid of a free G-act is regular, where G is any group. In the present paper we use a version of the wreath product construction of [8], [9] to determine the projective right S-acts (S any monoid) whose endomorphism monoid is regular.
The aim of this paper is to consider Problem 1 posed by Stewart and Wiegold in [6]. The main result is that if G is a finitely generated perfect group having non-trivial finite images, then there exists a finite image B of G such that the growth sequence of B is eventuallly faster than that of every finite image of G. Moreover we investigate the growth sequences of simple groups of the same order.
A closure operation connected with Hall subgroups is introduced for classes of finite soluble groups, and it is shown that this operation can be used to give a criterion for membership of certain special Fitting classes, including the so-called ‘central-socle’ classes.
We give an improved bound for the order of a p-group enjoying the title property. We also point out relations between the upper central series of a p-group and of its maximal subgroups.
A common generalization of the author's embedding theorem concerning the E-unitary regular semigroups with regular band of idempotents, and Billhardt's and Ismaeel's embedding theorem on the inverse semigroups, the closure of whose set of idempotents is a Clifford semigroup, is presented. We prove that each orthodox semigroup with a regular band of idempotents, which is an extension of an orthogroup K by a group, can be embedded into a semidirect product of an orthogroup K′ by a group, where K′ belongs to the variety of orthogroups generated by K. The proof is based on a criterion of embeddability into a semidirect product of an orthodox semigroup by a group and uses bilocality of orthogroup bivarieties.
In this paper we shall extend the classical theory of Morita equivalence to semigroups with local units. We shall use the concept of a Morita context to rediscover the Rees theorem and to characterise completely 0-simple and regular bisimple semigroups.