To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a finite group that acts on a finite group V, and let p be a prime that does not divide the order of V. Then the p-parts of the orbit sizes are the same in the actions of G on the sets of conjugacy classes and irreducible characters of V. This result is derived as a consequence of some general theory relating orbits and chains of p-subgroups of a group.
A major result of D. B. McAlister is that every inverse semigroup is an idempotent separating morphic image of an E-unitary inverse semigroup. The result has been generalized by various authors (including Szendrei, Takizawa, Trotter, Fountain, Almeida, Pin, Weil) to any semigroup of the following types: orthodox, regular, ii-dense with commuting idempotents, E-dense with idempotents forming a subsemigroup, and is-dense. In each case, a semigroup is a morphic image of a semigroup in which the weakly self conjugate core is unitary and separated by the homomorphism. In the present paper, for any variety H of groups and any E-dense semigroup S, the concept of an “H-verbal subsemigroup” of S is introduced which is intimately connected with the least H-congruence on S. What is more, this construction provides a short and easy access to covering results of the aforementioned kind. Moreover, the results are generalized, in that covers over arbitrary group varieties are constructed for any E-dense semigroup. If the given semigroup enjoys a “regularity condition” such as being eventually regular, group bound, or regular, then so does the cover.
The main result is that every torsion-free locally nilpotent group that is isomorphic to each of its nonnilpotent subgroups is nilpotent, that is, a torsion-free locally nilpotent group G that is not nilpotent has a non-nilpotent subgroup H that is not isomorphic to G.
A subsemigroup S of a semigroup Q is an order in Q if, for every q ∈ Q, there exist a, b, c, d ∈ S such that q = a−1b = cd−1 where a and d are contained in (maximal) subgroups of Q and a−1 and d−1 are their inverses in these subgroups. A semigroup which is a union of its subgroups is completely regular.
The paper discusses modules over free nilpotent groups and demonstrates that faithful modules are more restricted than might appear at first glance. Some discussion is also made of applying the techniques more generally.
Let V be an infinite-dimensional vector space ovre a field of characteristic 0. It is well known that the tensor algebra T on V is a completely reducible module for the general linear group G on V. This paper is concerned with those quotient algebras A of T that are at the same time modules for G. A partial solution is given to the problem of determinig those A in which no irreducible constitutent has multiplicity greater thatn 1.
Bounds are obtained for the minimum number of generators for the fundamental groups of a family of closed 3-dimensional manifolds. A significant role has been played by the use of computers.
Let K be a field of characteristic p. The permutation modules associated to partitions of n, usually denoted as Mλ, play a central role not only for symmetric groups but also for general linear groups, via Schur algebras. The indecomposable direct summands of these Mλ were parametrized by James; they are now known as Young modules; and Klyachko and Grabmeier developed a ‘Green correspondence’ for Young modules. The original parametrization used Schur algebras; and James remarked that he did not know a proof using only the representation theory of symmetric groups. We will give such proof, and we will at the same time also prove the correspondence result, by using only the Brauer construction, which is valid for arbitrary finite groups.
A permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive permutation group is quasiprimitive, but the converse is not true. In this paper we start a project whose goal is to check which of the classical results on finite primitive permutation groups also holds for quasiprimitive ones (possibly with some modifications). The main topics addressed here are bounds on order, minimum degree and base size, as well as groups containing special p-elements. We also pose some problems for further research.
Let G be a finite group of order pk, where p is a prime and k ≥ 1, such that G is either cyclic, quaternion or generalised quaternion. Let V be a finite-dimensional free KG-module where K is a field of characteristic p. The Lie powers Ln(V) are naturally KG-modules and the main result identifies these modules up to isomorphism. There are only two isomorphism types of indecomposables occurring as direct summands of these modules, namely the regular KG-module and the indecomposable of dimension pk – pk−1 induced from the indecomposable K H-module of dimension p − 1, where H is the unique subgroup of G of order p. Formulae are given for the multiplicities of these indecomposables in Ln(V). This extends and utilises work of the first author and R. Stöhr concerned with the case where G has order p.
A cover for a group is a finite set of subgroups whose union is the whole group. A cover is minimal if its cardinality is minimal. Minimal covers of finite soluble groups are categorised; in particular all but at most one of their members are maximal subgroups. A characterisation is given of groups with minimal covers consisting of abelian subgroups.
Let R be a ring with 1 and En (R) be the subgroup of GLn(R) generated by the matrices I + reij, r ∈ R, i ≠ j. We prove that the subgroup of consisting of the matrices of shape , where and , is (2, 3, 7)-generated whenever R is finitely generated and n, are large enough.
We exhibit a variation of the Lazard Elimination theorem for free restricted Lie algebras, and apply it to two problems about finite group actions on free Lie algebras over fields of positive characteristic.
Comments are made on the following question. Let m, n be positive integers and g a finite group. Suppose that for all choices of a subset of cardinality m and of a subset of cardinality n in g some member of the first commutes with some member of the second. Under what conditions on m, n is the group abelian?
This paper inverstigates the automorphism groups of Cayley graphs of metracyclic p-gorups. A characterization is given of the automorphism groups of Cayley grahs of a metacyclic p-group for odd prime p. In particular, a complete determiniation of the automophism group of a connected Cayley graph with valency less than 2p of a nonabelian metacyclic p-group is obtained as a consequence. In subsequent work, the result of this paper has been applied to solve several problems in graph theory.
We consider finite groups with the property that any proper factor can be generated by a smaller number of elements than the group itself. We study some problems related with the probability of generating these groups with a given number of elements.
The Spelling Theorem of B. B. Newman states that for a one-relator group (a1, … | Wn), any nontrivial word which represents the identity must contain a (cyclic) subword of W±n longer than Wn−1. We provide a new proof of the Spelling Theorem using towers of 2-complexes. We also give a geometric classification of reduced disc diagrams in one-relator groups with torsion. Either the disc diagram has three 2-cells which lie almost entuirly along the bounday, or the disc diagram looks like a ladder. We use this ladder theorem to prove that a large class of one-relator groups with torsion are locally quasiconvex.
Let k be a field of characteristic p > 0, G a finite p-solvable group and pm the highest power of p dividing the order of G. We denote by t(G) the nilpotency index of the (Jacobson) radical of the group algebra k[G]. The groups G with t(G) ≥ pm−1 are already classified. The aim of this paper is to classify the p-solvable groups G with pm−2 < t(G) < pm−1 for p odd.
An inverse semigroup S is said to be meet (join) semidistributive if its lattice (S) of full inverse subsemigroups is meet (join) semidistributive. We show that every meet (join) semidistributive inverse semigroup is in fact distributive.