We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subsemigroup S of a semigroup Q is a left order in Q, and Q is a semigroup of left quotients of S, if every element of Q can be written as a−1b for some a, b∈S with a belonging to a group -class of Q. Necessary and sufficient conditions on a semigroup S are obtained in order that S be a left order in a completely 0-simple semigroup Q. The class of all completely 0-simple semigroups of left quotients of S is related to the set of certain left congruences on S. Axioms are provided for semigroups which occur in the discussion of left orders in completely 0-simple semigroups.
Let p be a prime, a field of pn elements, and G a finite p-group. It is shown here that if G has a quotient whose commutator subgroup is of order p and whose centre has index pk, then the group of normalized units in the group algebra has a conjugacy class of pnk elements. This was first proved by A. Bovdi and C. Polcino Milies for the case k = 2; their argument is now generalized and simplified. It remains an intriguing question whether the cardinality of the smallest noncentral conjugacy class can always be recognized from this test.
In this paper we consider groups in which every subgroup has finite index in the nth term of its normal closure series, for a fixed integer n. We prove that such a group is the extension of a finite normal subgroup by a nilpotent group, whose class is bounded in terms of n only, provided it is either periodic or torsion-free.
A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product in product action. All such simple permutation groups are determined in this paper. This remarkable conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective connections between them, are explored in greater generality, with specific future applications in mind.
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper we show that there exists a one-regular cubic graph of order 2p or 2p2 where p is a prime if and only if 3 is a divisor of p – 1 and the graph has order greater than 25. All of those one-regular cubic graphs are Cayley graphs on dihedral groups and there is only one such graph for each fixed order. Surprisingly, it can be shown that there is no one-regular cubic graph of order 4p or 4p2.
We study the stability map from the rigid analytic space of semistable points in P3 to convex sets in the building of Sp2 over a local field and construct a pure affinoid covering of the space of stable points.
Given a lattice formation F of full characteristic, an F - Fitting class is a Fitting class with stronger closure properties involving F -subnormal subgroups. The main aim of this paper is to prove that the associated injectors possess a good behaviour with respect to F -subnormal subgroups.
In the present paper we consider Fitting classes of finite soluble groups which locally satisfy additional conditions related to the behaviour of their injectors. More precisely, we study Fitting classes 1 ≠⊆such that an-injector of G is, respectively, a normal, (sub)modular, normally embedded, system permutable subgroup of G for all G ∈.
Locally normal Fitting classes were studied before by various authors. Here we prove that some important results—already known for normality—are valid for all of the above mentioned embedding properties. For instance, all these embedding properties behave nicely with respect to the Lockett section. Further, for all of these properties the class of all finite soluble groups G such that an x-injector of G has the corresponding embedding property is not closed under forming normal products, and thus can fail to be a Fitting class.
A lattice formation is a class of groups whose elements are the direct product of Hall subgroups corresponding to pairwise disjoint sets of primes. In this paper Fitting classes with stronger closure properties involving F-subnormal subgroups, for a lattice formation F of full characteristic, are studied. For a subgroup-closed saturated formation G, a characterisation of the G-projectors of finite soluble groups is also obtained. It is inspired by the characterisation of the Carter subgroups as the N-projectors, N being the class of nilpotent groups.
Characterisations of finite groups in which normality is a transitive relation are presented in the paper. We also characterise the finite groups in which every subgroup is either permutable or coincides with its permutiser as the groups in which every subgroup is permutable.
This paper is concerned with the well-known and long-standing k(G V)-problem: If the finite group G acts faithfully and irreducibly on the finite GF(p)-module V and p does not divide the order of G, is the number k(GV) of conjugacy classes of the semidirect product GV bounded above by the order of V? Over the past two decades, through the work of numerous people, by using deep character theoretic arguments this question has been answered in the affirmative except for ρ = 5 for which it is still open. In this paper we suggest a new approach to the k(G V)-problem which is independent of most of the previous work on the problem and which is mainly group theoretical. To demonstrate the potential of the new line of attack we use it to solve the k(G V)-problem for solvable G and large ρ.
Generalizing and strengthening some well-known results of Higman, B. Neumann, Hanna Neumann and Dark on embeddings into two-generator groups, we introduce a construction of subnormal verbal embedding of an arbitrary (soluble, fully ordered or torsion free) ordered countable group into a twogenerator ordered group with these properties. Further, we establish subnormal verbal embedding of defect two of an arbitrary (soluble, fully ordered or torsion free) ordered group G into a group with these properties and of the same cardinality as G, and show in connection with a problem of Heineken that the defect of such an embedding cannot be made smaller, that is, such verbal embeddings of ordered groups cannot in general be normal.
Let M be a commutative cancellative atomic monoid. We consider the behaviour of the asymptotic length functions and on M. If M is finitely generated and reduced, then we present an algorithm for the computation of both and where x is a nonidentity element of M. We also explore the values that the functions and can attain when M is a Krull monoid with torsion divisor class group, and extend a well-known result of Zaks and Skula by showing how these values can be used to characterize when M is half-factorial.
If ω ≡ 1 is a group law implying virtual nilpotence in every finitely generated metabelian group satisfying it, then it implies virtual nilpotence for the finitely generated groups of a large class of groups including all residually or locally soluble-or-finite groups. In fact the groups of satisfying such a law are all nilpotent-by-finite exponent where the nilpotency class and exponent in question are both bounded above in terms of the length of ω alone. This yields a dichotomy for words. Finally, if the law ω ≡ 1 satisfies a certain additional condition—obtaining in particular for any monoidal or Engel law—then the conclusion extends to the much larger class consisting of all ‘locally graded’ groups.
Let G be a finite group of even order, k be a field of characteristic 2, and M be a finitely generated kG-module. If M is realized by a compact G-Moore space X, then the Betti numbers of the fixed point set XCn and the multiplicities of indecomposable summands of M considered as a kCn-module are related via a localization theorem in equivariant cohomology, where Cn is a cyclic subgroup of G of order n. Explicit formulas are given for n = 2 and n = 4.
Let Γ be a free noncommutative group with free generating set A+. Let μ ∈ ℓ1(Γ) be real, symmetric, nonnegative and suppose that supp. Let λ be an endpoint of the spectrum of μ considered as a convolver on ℓ2(Γ). Then λ − μ is in the left kernel of exactly one pure state of the reduced in particular, Paschke's conjecture holds for λ − μ.
Certain permutation representations of free groups are constructed by finite approximation. The first is a construction of a cofinitary group with special properties, answering a question of Tim Wall published by Cameron. The second yields, via a method of Kepert and Willis, a totally disconnected locally compact group which is compactly generated and uniscalar but has no compact open normal subgroup. Finally, an oligomorphic group of automorphisms of the random graph is built, all of whose non-trivial subgroups have just finitely many orbits.
In 1986, Higgins proved that T(X), the semigroup (under composition) of all total transformations of a set X, has a proper dense subsemigroup if and only if X is infinite, and he obtained similar results for partial and partial one-to-one transformations. We consider the generalised transformation semigroup T(X, Y) consisting of all total transformations from X into Y under the operation α * β = αθβ, where θ is any fixed element of T(Y, X). We show that this semigroup has a proper dense subsemigroup if and only if X and Y are infinite and | Yθ| = min{|X|,|Y|}, and we obtain similar results for partial and partial one-to-one transformations. The results of Higgins then become special cases.
Davey and Quackenbush proved a strong duality for each dihedral group Dm with m odd. In this paper we extend this to a strong duality for each finite group with cyclic Sylow subgroups (such groups are known to be metacyclic).
The spherical functions of triangle buildings can be described in terms of certain two-dimensional orthogonal polynomials on Steiner's hypocycloid which are closely related to Hall-Littlewood polynomials. They lead to a one-parameter family of two-dimensional polynimial hypergroups. In this paper we investigate isotropic random walks on the vertex sets of triangle buildings in terms of their projections to these hypergroups. We present strong laws of large numbers, a central limit theorem, and a local limit theorem; all these results are well-known for homogeneous trees. Proofs are based on moment functions on hypergroups and on explicit expansions of the hypergroup characters in terms of certain two-dimensional Tchebychev polynimials.