We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A submonoid S of a monoid M is said to be cofull if it contains the group of units of M. We extract from the work of Easdown, East and FitzGerald (2002) a sufficient condition for a monoid to embed as a cofull submonoid of the coset monoid of its group of units, and show further that this condition is necessary. This yields a simple description of the class of finite monoids which embed in the coset monoids of their group of units. We apply our results to give a simple proof of the result of McAlister [D. B. McAlister, ‘Embedding inverse semigroups in coset semigroups’, Semigroup Forum20 (1980), 255–267] which states that the symmetric inverse semigroup on a finite set X does not embed in the coset monoid of the symmetric group on X. We also explore examples, which are necessarily infinite, of embeddings whose images are not cofull.
Let α be a formation of finite groups which is closed under subgroups and group extensions and which contains the formation of solvable groups. Let G be any finite group. We state and prove equivalences between conditions on chief factors of G and structural characterizations of the α-residual and theα-radical of G. We also discuss the connection of our results to the generalized Fitting subgroup of G.
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.
For a numerical semigroup S, a positive integer a and a nonzero element m of S, we define a new numerical semigroup R(S,a,m) and call it the (a,m)-rotation of S. In this paper we study the Frobenius number and the singularity degree of R(S,a,m). Moreover, we observe that the rotations of ℕ are precisely the modular numerical semigroups.
Kublanovsky has shown that if a subvariety V of the variety RSn generated by completely 0-simple semigroups over groups of exponent n is itself generated by completely 0-simple semigroups, then it must satisfy one of three conditions: (i) A2 ∈ V; (ii) (iii) B2∈V but The conditions (i) and (ii) are also sufficient conditions. In this note, we complete Kublanovsky’s programme by refining condition (iii) to obtain a complete set of conditions that are both necessary and sufficient.
In 1975, Symons described the automorphisms of the semigroup T(X,Y ) consisting of all total transformations from a set X into a fixed subset Y of X. Recently Sanwong, Singha and Sullivan determined all maximal (and all minimal) congruences on T(X,Y ), and Sommanee studied Green’s relations in T(X,Y ). Here, we describe Green’s relations and ideals for the semigroup T(V,W) consisting of all linear transformations from a vector space V into a fixed subspace W of V.
This paper is a brief survey of recent results and some open problems related to linear groups of finite Morley rank, an area of research where Bruno Poizat's impact is very prominent. As a sign of respect to his strongly expressed views that mathematics has to be done, written and pulished only in the native tongue of the immediate author–the scribe, in effect–of the text, I insist on writing my paper in Russian, even if the results presented belong to a small but multilingual community of researchers of American, British, French, German, Kazakh, Russian, Turkish origin. To emphasise even further the linguistic subtleties involved, I use British spelling in the English fragments of my text.
Let G bea p-group of maximal class of order pn. It isshown that the order of the group of all automorphisms of G centralizing the Frattini quotient takes the maximum value p2n−4 if and only if G is metabelian. A structure theorem is proved for the Sylow p-subgroup, Autp(G), of the automorphism group of G when G is metabelian. For p=2, Aut2(G) is the full automorphism group of G. For p=3, we prove a structure theorem for the full automorphism group of G.
A simpleundirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let p be a prime. It was shown by Folkman [J. Folkman, ‘Regular line-symmetric graphs’, J. Combin. Theory3 (1967), 215–232] that a regular edge-transitive graph of order 2p or 2p2 is necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given. It is proved that every cubic edge-transitive graph of order 8p2 is vertex-transitive.
We show that if G is a group and G has a graph-product decomposition with finitely generated abelian vertex groups, then G has two canonical decompositions as a graph product of groups: a unique decomposition in which each vertex group is a directly indecomposable cyclic group, and a unique decomposition in which each vertex group is a finitely generated abelian group and the graph satisfies the T0 property. Our results build on results by Droms, Laurence and Radcliffe.
If P is a closed 3-manifold the covering space associated to a finitely presentable subgroup ν of infinite index in π1(P) is finitely dominated if and only if P is aspherical or . There is a corresponding result in dimension 4, under further hypotheses on π and ν. In particular, if M is a closed 4-manifold, ν is an ascendant, FP3, finitely-ended subgroup of infinite index in π1(M), π is virtually torsion free and the associated covering space is finitely dominated then either M is aspherical or or S3. In the aspherical case such an ascendant subgroup is usually Z, a surface group or a PD3-group.
We compute commutativity degrees of wreath products of finite Abelian groups A and B. When B is fixed of order n the asymptotic commutativity degree of such wreath products is 1/n2. This answers a generalized version of a question posed by P. Lescot. As byproducts of our formula we compute the number of conjugacy classes in such wreath products, and obtain an interesting elementary number-theoretic result.
We prove that certain tree products of finitely generated Abelian groups have Property E. Using this fact, we show that the outer automorphism groups of those tree products of Abelian groups and Brauner’s groups are residually finite.
It is known that, for semigroups, the property of admitting a finite presentation is preserved on passing to subsemigroups and extensions of finite Rees index. The present paper shows that the same holds true for Malcev, cancellative, left-cancellative and right-cancellative presentations. (A Malcev (respectively, cancellative, left-cancellative, right-cancellative) presentation is a presentation of a special type that can be used to define any group-embeddable (respectively, cancellative, left-cancellative, right-cancellative) semigroup.)
We give a formula for the character of the representation of the symmetric group Sn on each isotypic component of the cohomology of the set of regular elements of a maximal torus of SLn, with respect to the action of the centre.
The finite generation and presentation of Schützenberger products of semigroups are investigated. A general necessary and sufficient condition is established for finite generation. The Schützenberger product of two groups is finitely presented as an inverse semigroup if and only if the groups are finitely presented, but is not finitely presented as a semigroup unless both groups are finite.
An extension of a result of Sela shows that if Γ is a torsion-free word hyperbolic group, then the only homomorphisms Γ→Γ with finite-index image are the automorphisms. It follows from this result and properties of quasiregular mappings, that if M is a closed Riemannian n-manifold with negative sectional curvature (), then every quasiregular mapping f:M→M is a homeomorphism. In the constant-curvature case the dimension restriction is not necessary and Mostow rigidity implies that f is homotopic to an isometry. This is to be contrasted with the fact that every such manifold admits a non-homeomorphic light open self-mapping. We present similar results for more general quotients of hyperbolic space and quasiregular mappings between them. For instance, we establish that besides covering projections there are no π1-injective proper quasiregular mappings f:M→N between hyperbolic 3-manifolds M and N with non-elementary fundamental group.
An element in a free group is a proper power if and only if it is a proper power in every nilpotent factor group. Moreover there is an algorithm to decide if an element in a finitely generated torsion-free nilpotent group is a proper power.
Projective planes of order n with a coUineation group admitting a 2-transitive orbit on a line of length at least n/2 are investigated and new examples are provided.