To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let R be an integral domain and A a symmetric cellular algebra over R with a cellular basis {CλS,T∣λ∈Λ,S,T∈M(λ)}. We construct an ideal L(A) of the centre of A and prove that L(A) contains the so-called Higman ideal. When R is a field, we prove that the dimension of L(A)is not less than the number of nonisomorphic simple A-modules.
It is well known that if a convex hyperbolic polygon is constructed as a fundamental domain for a subgroup of SL(2,ℝ), then its translates by the group form a locally finite tessellation and its side-pairing transformations form a system of generators for the group. Such a hyperbolically convex fundamental domain for any discrete subgroup can be obtained by using Dirichlet’s and Ford’s polygon constructions. However, these two results are not well adapted for the actual construction of a hyperbolically convex fundamental domain due to their nature of construction. A third, and most important and practical, method of obtaining a fundamental domain is through the use of a right coset decomposition as described below. If Γ2 is a subgroup of Γ1 such that Γ1=Γ2⋅{L1,L2,…,Lm} and 𝔽 is the closure of a fundamental domain of the bigger group Γ1, then the set is a fundamental domain of Γ2. One can ask at this juncture, is it possible to choose the right coset suitably so that the set ℛ is a convex hyperbolic polygon? We will answer this question affirmatively for Hecke modular groups.
We extend some results known for FC-groups to the class FC* of generalized FC-groups introduced in de Giovanni et al. [‘Groups with restricted conjugacy classes’, Serdica Math. J.28(3) (2002), 241–254]. The main theorems pertain to the join of pronormal subgroups. The relevant role that the Wielandt subgroup plays in an FC*-group is pointed out.
Suppose that p is 3,5,7,11 or 13. We classify the radical p-chains of the Monster 𝕄 and verify the Alperin weight conjecture and Uno’s reductive conjecture for 𝕄, the latter being a refinement of Dade’s reductive conjecture and the Isaacs–Navarro conjecture.
Suppose that G is a connected reductive group over a p-adic field F, that K is a hyperspecial maximal compact subgroup of G(F), and that V is an irreducible representation of K over the algebraic closure of the residue field of F. We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported,K-biequivariant functions f:G(F)→End V. These Hecke algebras were first considered by Barthel and Livné for GL 2. They play a role in the recent mod p andp-adic Langlands correspondences for GL 2 (ℚp) , in generalisations of Serre’s conjecture on the modularity of mod p Galois representations, and in the classification of irreducible mod p representations of unramified p-adic reductive groups.
The holonomic rank of the A-hypergeometric system MA(β) is the degree of the toric ideal IA for generic parameters; in general, this is only a lower bound. To the semigroup ring of A we attach the ranking arrangement and use this algebraic invariant and the exceptional arrangement of non-generic parameters to construct a combinatorial formula for the rank jump of MA(β). As consequences, we obtain a refinement of the stratification of the exceptional arrangement by the rank of MA(β) and show that the Zariski closure of each of its strata is a union of translates of linear subspaces of the parameter space. These results hold for generalized A-hypergeometric systems as well, where the semigroup ring of A is replaced by a non-trivial weakly toric module M⊆ℂ[ℤA] . We also provide a direct proof of the main result in [M. Saito, Isomorphism classes of A-hypergeometric systems, Compositio Math. 128 (2001), 323–338] regarding the isomorphism classes of MA (β) .
Let G be a finite group. If G has a cyclic Sylow 2-subgroup, then G has the same number of irreducible rational-valued characters as of rational conjugacy classes. These numbers need not be the same even if G has Klein Sylow 2-subgroups and a normal 2-complement.
We introduce the notion of wide representation of an inverse semigroup and prove that with a suitably defined topology there is a space of germs of such a representation that has the structure of an étale groupoid. This gives an elegant description of Paterson's universal groupoid and of the translation groupoid of Skandalis, Tu and Yu. In addition, we characterize the inverse semigroups that arise from groupoids, leading to a precise bijection between the class of étale groupoids and the class of complete and infinitely distributive inverse monoids equipped with suitable representations, and we explain the sense in which quantales and localic groupoids carry a generalization of this correspondence.
We show that if A is a stable basis algebra satisfying the distributivity condition, then B is a reduct of an independence algebra A having the same rank. If this rank is finite, then the endomorphism monoid of B is a left order in the endomorphism monoid of A.
In this paper we refine and extend the applicability of the algorithms in Bates and Rowley (Arch. Math. 92 (2009) 7–13) for computing part of the normalizer of a 2-subgroup in a black-box group.
We describe an algorithm for computing successive quotients of the Schur multiplier M(G) of a group G given by an invariant finite L-presentation. As applications, we investigate the Schur multipliers of various self-similar groups, including the Grigorchuk super-group, the generalized Fabrykowski–Gupta groups, the Basilica group and the Brunner–Sidki–Vieira group.
We investigate the representations and the structure of Hecke algebras associated to certain finite complex reflection groups. We first describe computational methods for the construction of irreducible representations of these algebras, including a generalization of the concept of aW-graph to the situation of complex reflection groups. We then use these techniques to find models for all irreducible representations in the case of complex reflection groups of dimension at most three. Using these models we are able to verify some important conjectures on the structure of Hecke algebras.
For an algebraic structure A denote by d(A) the smallest size of a generating set for A, and let d(A)=(d(A),d(A2),d(A3),…), where An denotes a direct power of A. In this paper we investigate the asymptotic behaviour of the sequence d(A) when A is one of the classical structures—a group, ring, module, algebra or Lie algebra. We show that if A is finite then d(A) grows either linearly or logarithmically. In the infinite case constant growth becomes another possibility; in particular, if A is an infinite simple structure belonging to one of the above classes then d(A) is eventually constant. Where appropriate we frame our exposition within the general theory of congruence permutable varieties.
This paper studies affine Deligne–Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, and extends previous conjectures concerning their dimensions. We generalize the superset method, an algorithmic approach to the questions of non-emptiness and dimension. Our non-emptiness results apply equally well to the p-adic context and therefore relate to moduli of p-divisible groups and Shimura varieties with Iwahori level structure.
A finite group is called a CH-group if for every x,y∈G∖Z(G), xy=yx implies that . Applying results of Schmidt [‘Zentralisatorverbände endlicher Gruppen’, Rend. Sem. Mat. Univ. Padova44 (1970), 97–131] and Rebmann [‘F-Gruppen’, Arch. Math.22 (1971), 225–230] concerning CA-groups and F-groups, the structure of CH-groups is determined, up to that of CH-groups of prime-power order. Upper bounds are found for the derived length of nilpotent and solvable CH-groups.
In this paper, we compute Ford fundamental domains for all genus-zero and genus-one congruence subgroups. This is a continuation of previous work, which found all such groups, including ones that are not subgroups of PSL(2,ℤ). To compute these fundamental domains, an algorithm is given that takes the following as its input: a positive square-free integer f, which determines a maximal discrete subgroup Γ0(f)+ of SL(2,ℝ); a decision procedure to determine whether a given element of Γ0(f)+ is in a subgroup G; and the index of G in Γ0(f)+. The output consists of: a fundamental domain for G, a finite set of bounding isometric circles; the cycles of the vertices of this fundamental domain; and a set of generators of G. The algorithm avoids the use of floating-point approximations. It applies, in principle, to any group commensurable with the modular group. Included as appendices are: MAGMA source code implementing the algorithm; data files, computed in a previous paper, which are used as input to compute the fundamental domains; the data computed by the algorithm for each of the congruence subgroups of genus zero and genus one; and an example, which computes the fundamental domain of a non-congruence subgroup.
We extend the result obtained in E. Godelle [‘The braid rook monoid’, Internat. J. Algebra Comput.18 (2008), 779–802] to every Renner monoid: we provide a monoid presentation for Renner monoids, and we introduce a length function which extends the Coxeter length function and which behaves nicely.
For an infinite set X, denote by Γ(X) the semigroup of all injective mappings from X to X. For α∈Γ(X), let C(α)={β∈Γ(X):αβ=βα} be the centralizer of α in Γ(X). For an arbitrary α∈Γ(X), we characterize the elements of C(α) and determine Green’s relations in C(α), including the partial orders of ℒ-, ℛ-, and 𝒥-classes.
Lazard showed in his seminal work (Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Études Sci. 26 (1965), 389–603) that for rational coefficients, continuous group cohomology of p-adic Lie groups is isomorphic to Lie algebra cohomology. We refine this result in two directions: first, we extend Lazard’s isomorphism to integral coefficients under certain conditions; and second, we show that for algebraic groups over finite extensions K/ℚp, his isomorphism can be generalized to K-analytic cochains andK-Lie algebra cohomology.